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Let |J,M⟩ represent the combination of two subsystems that have total angular momentum
j1 and j2 respectively. Here J is the net angular momentum of the combined system and
M represents the amount of net angular momentum aligned along the z−axis. We want to
express the states of the combined system (i.e. with varying values of J and M) in terms of
the states of the subsystems.

The total angular momenta j1 and j2 of the individual subsystems do not change, so the
maximum possible net angular momentum is j := j1+j2. Begin with the highest weight state
|j, j⟩ where both subsystems are fully aligned along the z−axis:

|j, j⟩ = |j1, j1⟩ |j2, j2⟩

Since −J ≤ M ≤ J , we can obtain the states |j, j − 1⟩ , |j, j − 2⟩ , . . . by acting with the
lowering operator

J− |J,M⟩ =
√

J(J + 1)−M(M − 1)ℏ |J,M − 1⟩ (1)

on both |j, j⟩ as a whole, and on |j1, j1⟩ |j2, j2⟩ with J− = J1z ⊗ 12 + 11 ⊗ J2z. Dividing
through will eliminate the ℏ factor, giving

|j, j − 1⟩ =
√

j1/j |j1, j1 − 1⟩ |j2, j2⟩+
√

j2, j |j1, j1⟩ |j2, j2 − 1⟩ .

Repeated use of the lowering operator gives all the states with J = j but lowered values of
M , corresponding to a rotation of the entire system where both j1 and j2 are still aligned in
the same direction, but not along the z−axis.

This takes care of all the J = j = j1 + j2 states. To obtain the states of form |J,M⟩ with
J < j, first obtain |j − 1, j − 1⟩ and then use the lowering operator as in (1) to get the re-
maining states for that value of J .

Recall that the action of Jz is

Jz |J,M⟩ = Mℏ |J,M⟩ (2)
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so it makes sense to use this operator to see what happens to |j − 1, j − 1⟩. Since we still
have j = j1 + j2, acting on this combined state gives

Jz |j − 1, j − 1⟩ = (j1 + j2 − 1)ℏ |j − 1, j − 1⟩ .

We don’t actually know the form of |j − 1, j − 1⟩ yet, but observing that in general

Jz |jα,mα⟩ |jβ,mβ⟩ = (mα +mβ)ℏ |jα,mα⟩ |jβ,mβ⟩

we can check that for a linear combination of combined states to be an eigenstate of Jz, the
corresponding mα and mβ for each term must have the same sum. Hence, to agree with
Jz |j − 1, j − 1⟩ we must have mα+mβ = j1+ j2−1, so (mα,mβ) is (j1, j2−1) or (j1−1, j2).
Write the combined state as a linear combination

|j − 1, j − 1⟩ = a |j1, j1 − 1⟩ |j2, j2⟩+ b |j1, j1⟩ |j2, j2 − 1⟩ .

Then using normalisation a2 + b2 = 1 and orthogonality ⟨j, j − 1|j − 1, j − 1⟩ = 0, we find
a =

√
j2/j and b = −

√
j1/j.

Applying the lowering operator repeatedly gives the states |j − 1, j − 2⟩ , |j − 1, j − 3⟩ , . . . . A
similar construction using Jz allows |j − 2, j − 2⟩ to be found in a similar way, obtaining the
coefficients through normalisation and orthogonality.

The state |j − 1, j − 1⟩ represents the case where j1 and j2 are imperfectly aligned with their
net angular momentum being j − 1, but where all of this net angular momentum is aligned
along the z−axis. Again, applying the lowering operator rotates the system round in a
semicircle.

How many states of the combined system are there in total? Intuitively, the lowest combined
angular momentum occurs when j1 and j2 are anti-aligned, so is |j1 − j2|. Without loss of
generality, the combined J is in {j1 + j2, j1 + j2 − 1, . . . , j1 − j2} so there are

j1+j2∑
j=j1−j2

(2j + 1) = (2j1 + 1)(2j2 + 1)

states in total.

We write the Clebsch-Gordan coefficients as

Cj,m(j1,m1; j2,m2) = ⟨j,m|(|j1,m1⟩ ⊗ |j2,m2⟩)⟩ .
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