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1 Foundational Notions

1.1 Basic Definitions

We define the fundamental properties we need to do analysis on complex functions. Particularly important
is the notion of a holomorphic function.

Definition (Continuity). Let f : A Ñ C. Then f is continuous at w P A if @ε ą 0, Dδ ą 0 s.t. z P A,
|z ´ w| ă δ ùñ |fpzq ´ fpwq| ă ε.

Definition (Differentiability and holomorphicity). Let U Ă C be open and let f : U Ñ C. Then f is
differentiable at w P U if the limit

f 1pwq “ lim
zÑw

fpzq ´ fpwq

z ´ w

exists in C.
We say f is holomorphic at w P U if Dε ą 0 s.t. Dpw, εq Ă U and f is differentiable at every point in Dpw, εq.
We say f is holomorphic in U if f is holomorphic at every point in U , or equivalently f is differentiable at
every point in U .

1.2 Cauchy-Riemann Equations

We can identify complex functions with functions on R2 in the natural way. In what way is the complex
differentiability related to differentiability of the corresponding function in R2?
We can write fpzq “ upx, yq`ivpx, yq where z “ x`iy. It turns out that differentiability of f at w “ c`id P U
and differentiability of u and v at pc, dq are not equivalent! We also need the Cauchy-Riemann equations to
hold.

Theorem (Cauchy-Riemann equations). The function f “ u` iv : U Ñ C is differentiable at w “ c` id P U
if and only if u, v : U Ñ R are differentiable at pc, dq P U and u and v satisfy the Cauchy-Riemann equations

Bu

Bx
“

Bv

By
and

Bu

By
“ ´

Bv

Bx
.

In this case, we get f 1pwq “ uxpc, dq ` ivxpc, dq.

Corollary. Let f “ u ` iv : U Ñ C. If u and v have continuous partial derivatives at c, d P U and satisfy
Cauchy-Riemann equations at pc, dq, then f is differentiable at w “ c ` id. In particular, if u and v are C1

on U and satisfy Cauchy-Riemann in U , then f is holomorphic in U .

Theorem (Looman-Menchoff Theorem). If f “ u ` iv is defined on an open set U and is continuous in U ,
and u and v satisfy Cauchy-Riemann in U , then f is holomorphic in U .

1.3 Power Series

We can prove standard properties of complex-value power series using the same methods as in IA Analysis I.

Theorem. Let
ř8

n“0 cnpz ´ aqn be a power series with radius of convergence R ą 0. Fix a P C and define
f : Dpa,Rq Ñ C by fpzq “

ř8
n“0 cnpz ´ aqn. Then

(i) f is holomorphic on Dpa,Rq

(ii) The derived series
ř8

n“1 ncnpz ´ aqn´1 also has radius of convergence R and equals f 1pzq

(iii) f has derivatives of all orders on Dpa,Rq and cn “ f pnqpaq{n!
(iv) if f vanishes on Dpa, εq for some ε ą 0 then f “ 0 on Dpa,Rq.
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1.4 Exponentials and Logarithms

Definition (Entire). If f : C Ñ C is holomorphic on all of C, then f is entire.

Definition (Complex exponential function). The complex exponential function ez is defined by

ez “

8
ÿ

n“0

zn

n!
.

Definition (Logarithm). Let z P C. Then w P C is a logarithm of z if ew “ z.

Definition (Branch of logarithm). Let U Ă Czt0u be open. Then a branch of logarithm on U is a continuous
function λ : U Ñ C with eλpzq “ z for each z P U .
If λ is a branch of logarithm on U , then λ is automatically holomorphic in U with λ1pzq “ 1{z.

Definition (Principal branch of logarithm). The principal branch of logarithm is the function Log : U1 “

Cztx P R : x ď 0u Ñ C defined by
Logpzq “ log |z| ` i arg z

for arg z P p´π, πq.

2 Conformal Maps

2.1 Definitions and Properties

We find that some holomorphic functions have the property of being angle-preserving. These functions, called
conformal maps, are useful for mapping between domains. They have useful properties such as preserving
harmonicity of a function under composition, and can be used to solve Laplace’s equation.

Definition (Conformal map). A function f : U Ñ C on an open set U is conformal at w P U if f is
holomorphic and f 1pwq ‰ 0.

Definition (Conformal equivalence). Let U and Ũ be domains in C. A map f : U Ñ Ũ is a conformal
equivalence between U and Ũ if f is a bijective holomorphic map with f 1pzq ‰ 0 for all z P U .

Proposition (Converse property). If f is a C1´map on U , then the converse to the angle-preserving
statement holds:
If for w P U , f has the property that pf ˝ γq1p0q ‰ 0 for all C1 curves γ with γp0q “ w and γ1p0q ‰ 0, and if
f is angle preserving at w, then f 1pwq exists and f 1pwq ‰ 0. (See the first example sheet).

2.2 Useful Conformal Maps

• We can show that all Möbius maps are conformal maps.

• Let H be the upper half-plane H “ tz : Impzq ą 0u X C. Then z P H if and only if |z ´ i| ă |z ` i|.
Hence the conformal map

z ÞÑ
z ´ i

z ` i

maps H onto the unit disc Dp0, 1q.
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3 Complex Integration

3.1 Definitions

We can define integration for complex functions in an analogous way to integration for real functions.

Definition (Integral). If f : ra, bs Ă R Ñ C is a continuous complex function (or more generally, if Repfq

and Impfq are Riemann integrable), we define

ż b

a
fptq dt “

ż b

a
Repfptqqdt ` i

ż b

a
Impfptqqdt.

Definition (Integral along curve). Let U Ă C be open and f : U Ñ C be continuous. Let γ : ra, bs Ñ U be
a C1 curve. Then the integral of f along γ is

ż

γ
fpzq dz “

ż b

a
fpγptqqγ1ptqdt.

This satisfies expected properties such as invariance under reparametrisation, linearity, additivity and inverse
path.

Definition (Length of curve). Let γ : ra, bs Ñ C be a C1´curve. Then the length of γ is defined by

lengthpγq “

ż b

a
|γ1ptq|dt.

Definition (Sum of curves). If γ1 : ra, bs Ñ C and γ2 : rc, ds Ñ C are curves with γ1pbq “ γ2pcq, we define
the sum of γ1 and γ2 to be pγ1 ` γ2q : ra, b ` d ´ cs Ñ C with

pγ1 ` γ2qptq “

#

γ1ptq for a ď t ď b

γ2pt ´ b ` cq for b ď t ď b ` d ´ c.

3.2 Fundamental Theorem of Calculus

We can prove a result analogous to the fundamental theorem of calculus for complex functions.

Theorem (Fundamental Theorem of Calculus). Suppose f : U Ñ C is continuous and U Ď C is open. If
there is a function F : U Ñ C such that F 1pzq “ fpzq @z P U , then for any curve γ : ra, bs Ñ U ,

ż

γ
fpzqdz “ F pγpbqq ´ F pγpaqq.

It follows that if such an antiderivative F exists, then the integral of f over a closed curve is 0.
It turns out that we can actually prove a converse to this: if the integral over every closed curve vanishes,
then the function has an antiderivative. This is a somewhat powerful condition.

Theorem (Converse to FTC). Let U Ă C be a domain. If f : U Ñ C is continuous and
ş

γ fpzq dz “ 0 for

every closed curve γ in U , then f has an antiderivative (i.e. D holomorphic F : U Ñ C with F 1pzq “ fpzq

@z P U).
(In this case, the antiderivative F is F pwq “

ş

γw
fpzq dz, where γw is a path from a fixed point a0 to w).
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3.3 Cauchy’s Theorem

We have just shown that if a continuous function has an antiderivative, then integrating the function over a
closed curve gives zero. We may ask the question: in what domains does integrating a holomorphic function
over a closed curve give zero? It turns out such domains are the simply connected domains, a result given by
Cauchy’s integral theorem.

Definition (Star-shaped domain). A domain U is star-shaped if there exists a0 P U such that @w P U , the
straight line segment ra0, ws Ă U .

Definition (Triangle in C). A triangle T in C is the convex hull of three points z1, z2, z3 P C. In this case

T “ taz1 ` bz2 ` cz3 : 0 ď a, b, c ď 1, a ` b ` c “ 1u.

Corollary (check using FTC converse). If U is star-shaped, f : U Ñ C is continuous and
ş

BT fpzq dz “ 0 for
any triangle T Ă U , then f has an antiderivative in U .

Theorem (Cauchy’s theorem for triangles). Let U Ă C be open and f : U Ñ C be holomorphic. Then

ż

BT
fpzqdz “ 0

for any triangle T Ă U .
To prove this we repeatedly subdivide a triangle T into four smaller triangles by joining the midpoints;
then we can form a nested sequence T “ T0, T1, T2, . . . and letting ηpTiq “

ş

BTi
fpzq dz we can bound

1
4n |ηpT0q| ď |ηpTnq| and working with lengths and using differentiability properties we can bound this above
by something that goes to 0.

Theorem (Generalisation of Cauchy’s theorem for triangles). Let U Ă C be open and f : U Ñ C be
continuous. Let S Ă U be a finite set and suppose f is holomorphic on UzS. Then

ż

BT
fpzqdz “ 0

for every triangle T Ă U .

Corollary (Convex Cauchy’s theorem). Let U Ă C be convex (or a star domain). Let f : U Ñ C be
continuous and holomorphic in UzS for some finite S. Then

ż

γ
fpzq dz “ 0

for any closed curve γ in U .

3.4 Cauchy’s Integral Formula

Suppose we know f is holomorphic inside a given disk. Then we can express the value of the function at any
point inside the disk in terms of an integral over the boundary of the disk.

Theorem (Cauchy’s Integral Formula for disk). Let D “ Dpa, rq and f : D Ñ C be holomorphic. Then for
any ρ with 0 ď ρ ď r and any w P Dpa, ρq we have

fpwq “
1

2πi

ż

BDpa,ρq

fpzq

z ´ w
dz.
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In particular, taking w “ a gives

fpaq “
1

2πi

ż

BDpa,ρq

fpzq

z ´ a
dz ùñ fpaq “

ż 1

0
fpa ` ρe2πitq dt

which is called the mean value property for holomorphic functions.

3.5 Liouville’s Theorem and the Fundamental Theorem of Algebra

Using Cauchy’s integral formula for a disk, we can prove the following, very powerful result:

Theorem (Liouville’s Theorem). If f : C Ñ C is entire and bounded, then f is constant.
(More generally, if f is entire with sub-linear growth i.e. DK ě 0, α ă 1 s.t. |fpzq| ď Kp1 ` |z|αq @z P C,
then f is constant).

Theorem (Fundamental Theorem of Algebra). Every non-constant polynomial with complex coefficients has
a complex root.

3.6 Local Maximum Modulus Principle

Here we consider a function f holomorphic on a disk. If |f | attains a maximum value on the disk, then f is
constant.

Theorem (Local maximum modulus principle). If f : Dpa,Rq Ñ C is holomorphic with |fpzq| ď |fpaq|

@z P Dpa,Rq, then f is constant.

3.7 Taylor Series

Early on, we have seen that power series are a way to construct holomorphic functions on a disk. In fact,
every holomorphic function on a disk arises this way.

Theorem (Taylor series). Let f : Dpa,Rq Ñ C be holomorphic. Then f has a convergent power series
representation on Dpa,Rq. More precisely, there is a sequence of complex numbers c0, c1, c2, . . . such that

fpwq “

8
ÿ

n“0

cnpw ´ aqn

for all w P Dpa,Rq, with coefficients

cn “
1

2πi

ż

BDpa,ρq

fpzq

pz ´ aqn`1
dz

for all ρ P p0, Rq.

It follows from this that if f is holomorphic on an open set U Ă C, then f has derivatives of all orders in U
which are themselves holomorphic on U .

Definition (Analytic). A function f is analytic at a point a if in a neighbourhood of a, f is given by a
convergent power series about a.

For complex functions, f is analytic if and only if it is holomorphic. This is not true for real functions e.g.
f : R Ñ R, fpxq “ e´1{x2

, which has f pnqp0q “ 0 for all n, but is not analytic.
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3.8 Morera’s Theorem

This is a useful criterion for determining whether a continuous function is holomorphic.

Theorem (Morera’s Theorem). Let U Ă C be open. If f : U Ñ C is continuous and
ş

γ fpzqdz “ 0 for all
closed curves γ in U , then f is holomorphic in U .

3.9 Isolated Points

An isolated point of a set in C can be isolated from every other element of the set by surrounding it with a
small enough disk.

Definition (Isolated point). Let S Ă C. We say that w P S is an isolated point of S if there is r ą 0 such
that S X Dpw, rq “ twu.

We can show that the zeros of a non-zero holomorphic function are isolated points. (This can be seen by
taking out a factor pz ´ aqm from the power series of the function).

Theorem (Principle of isolated zeros). Let f : Dpa,Rq Ñ C be holomorphic and not identically zero. Then
there exists r with 0 ă r ă R such that fpzq ‰ 0 whenever 0 ă |z ´ a| ă r.

(This says that f is nonzero on a small enough disk around the centre of the domain, except perhaps at the
centre point).

A number of useful consequences follow:

• If fpaq “ 0 (with f not identically zero), then a is an isolated point of the zero set. It follows that there
is no nonzero holomorphic function that vanishes on a line segment or a half disk.

• The zero set may have an accumulation point on the boundary of the domain of f .

3.10 Unique Continuation

Consider f : Dpa, rq Ñ C holomorphic. By the Taylor series theorem, f is uniquely determined by its values
in an arbitrarily small disk, because the coefficients in the expansion are determined by values on the disk.
This notion of “extension” of a function to a larger domain can be generalised.
The following theorem asserts uniqueness of such a continuation, but not necessarily existence.

Theorem (Unique continuation for analytic functions). Let U and V be domains with U Ă V . If
g1, g2 : V Ñ C are analytic functions and g1 “ g2 on U , then g1 “ g2 on V .

Corollary (Identity principle). Let f, g : U Ñ C be holomorphic in a domain U . If the set S “ tz P U :
fpzq “ gpzqu contains a non-isolated point, then f “ g in U .

Corollary (Global maximum principle). Let U be open and bounded. Suppose f : Ū Ñ C is continuous
with f holomorphic in U . Then |f | attains its maximum on BU “ ŪzU .

3.11 Cauchy’s Integral Formula for Derivatives

We in fact have an integral formula for an nth derivative of f that depends only on f itself, and not on any
of its derivatives.
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Theorem (CIF for derivatives). Let f : Dpa,Rq Ñ C be holomorphic. If f pnq denotes the nth derivative,
then for any ρ P p0, Rq, w P Dpa, ρq, we have

f pnqpwq “
n!

2πi

ż

BDpa,ρq

fpzq

pz ´ wqn`1
dz.

3.12 Cauchy Estimate

Using Cauchy’s integral formula for derivatives, we obtain the following:

sup
zPDpa,R{2q

|f pkqpzq| ď
C

Rk
sup

zPDpa,Rq

|fpzq|

where C is a constant depending only on k; in fact we can take C “ k! 2k`1. This allows us to bound the
magnitude of the kth derivative on a disk of half the radius of the original.

3.13 Uniform Limits of Holomorphic Functions

We may want to see what we can say about the properties of a uniform limit of holomorphic functions, and
see how they compare to the corresponding properties for continuous and differentiable real functions. What
properties does a uniform limit preserve?

Definition (Local uniform convergence). Let U Ă C be open and fn : U Ñ C be a sequence of functions.
We say pfnq converges locally uniformly on U if for each a P U , there exists r ą 0 such that r converges
uniformly on Dpa, rq.

Proposition. The sequence pfnq converges locally uniformly on U if and only if pfnq converges uniformly on
each compact subset K Ă U .

Theorem (Uniform limits of holomorphic functions). Let U Ă C be open and fn : U Ñ C be holomorphic
for each n. If pfnq converges locally uniformly on U to some f : U Ñ C, then f is holomorphic. Moreover,
f 1
n Ñ f 1 locally uniformly on U .

4 Complex Integration II

In this section, we want to (i) given a domain, characterise the closed curves in it for which Cauchy’s theorem
holds for all holomorphic functions, and (ii) use this to enlarge the class of domains for which Cauchy’s
theorem holds.

4.1 Winding Number

The winding number is a way to quantify “how many times” a curve winds around a point.

Definition (Winding number). Let γ : ra, bs Ñ C be a closed, piecewise C1 curve with w R imgpγq. Let
r : ra, bs Ñ R, rptq “ |γptq ´ w|. If there exists a continuous θ : ra, bs Ñ R such that

γptq “ w ` rptqeiθptq

then the winding number of γ about w is

Ipγ;wq “
θpbq ´ θpaq

2π
.
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We can check this is well-defined and always gives an integer. In fact, for a well-behaved curve, we can show
such a θ exists, and express the winding number in a nice integral form.

Lemma (Integral formula for winding number). If w P C, γ : ra, bs Ñ Cztwu is a piecewise C1 curve, then
there exists a piecewise C1 function θ : ra, bs Ñ R such that γptq “ w ` rptqeiθptq where rptq “ |γptq ´ w|.
Moreover if γ is closed, then

Ipγ;wq “
1

2πi

ż

γ

dz

z ´ w
.

Proposition. If γ : ra, bs Ñ C is a closed curve, then the function w ÞÑ Ipγ;wq is continuous on Czimgpγq.
Hence (since I P Z), I is locally constant.

Proposition. (i) If γ : ra, bs Ñ Dpz0, Rq is a closed curve, then Ipγ;wq “ 0 for any w P CzDpz0, Rq

(ii) If γ : ra, bs Ñ C is a closed curve, then there is a unique unbounded connected component Ω of Czγpra, bsq
and Ipγ;wq “ 0 for all w P Ω.

Lemma. Let f : U Ñ C be holomorphic and define g : U ˆ U Ñ C by

gpz, wq “

#

fpzq´fpwq

z´w z ‰ w

f 1pwq z ´ w
.

Then g is continuous, and γ is a closed curve in U , then hpwq :“
ş

γ gpz, wq dz is holomorphic on U .

4.2 Fubini’s Theorem

This is a special case of a theorem that essentially allows us to interchange the order of integration.

Theorem (Fubini’s theorem special case). If ϕ : ra, bs ˆ rc, ds Ñ R is continuous, then the function f1 : s ÞÑ
şd
c ϕps, tqdt is continuous on ra, bs, the function f2 : t ÞÑ

şb
a ϕps, tqds is continuous on rc, ds, and

ż b

a

ˆ
ż d

c
ϕps, tqdt

˙

ds “

ż d

c

ˆ
ż b

a
ϕps, tqds

˙

dt.

5 General Cauchy’s Theorem

To generalise this statement, we need the concept of being homologous to zero. For a closed curve, this means
its winding number around any point not on the curve is zero.

Definition (Homologous to zero). Let U Ă C be open. A closed curve γ : ra, bs Ñ U is homologous to zero
in U if Ipγ;wq “ 0 for every w P CzU .

5.1 General Cauchy Theorem and Integral Formula

Theorem (General Cauchy theorem and CIF). Let U be a nonempty open subset of C and γ be a closed
curve in U homologous to zero in U . Then
(i) For every holomorphic f : U Ñ C and every w P Uzimgpγq

Ipγ;wqfpwq “
1

2πi

ż

γ

fpzq

z ´ w
dz

(ii) For every holomorphic f : U Ñ C
ż

γ
fpzq dz “ 0.
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Corollary. Let U Ă C be open and γ1, γ2, . . . , γn be closed curves in U such that
řn

j“1 Ipγj ;wq “ 0 for all
w P CzU . Then for any holomorphic f : U Ñ C, we have
(i) for every w P Uz

Ťn
j“1 imgpγjq

fpwq

n
ÿ

j“1

Ipγj ;wq “

n
ÿ

j“1

1

2πi

ż

γj

fpzq

z ´ w
dz

and (ii)
n

ÿ

j“1

ż

γj

fpzqdz “ 0.

Corollary. Let U Ă C be open and let β1, β2 be closed curves in U such that Ipβ1;wq “ Ipβ2;wq for all
w P CzU . Then

ż

β1

fpzq dz “

ż

β2

fpzq dz

for any holomorphic function f : U Ñ C.

5.2 Homotopic Curves

We have just answered the question of “for which closed curves in a given domain is the Cauchy theorem
valid”. The answer is curves that are homologous to zero in the domain. However, this condition may be
difficult to check. There is a more restrictive condition, called being null-homotopic, which implies being
homologous to zero.

Definition (Homotopic curves). Let U Ă C be a domain, and let γ0, γ1 : ra, bs Ñ U be closed curves. We
say γ0 is homotopic to γ1 in U if there is a continuous map H : r0, 1s ˆ ra, bs Ñ U such that

Hp0, tq “ γ0ptq @t P ra, bs

Hp1, tq “ γ1ptq @t P ra, bs

Hps, aq “ Hps, bq @s P r0, 1s.

Such a map H is called a homotopy between γ0 and γ1. We can interpret this as saying it is possible to
deform one curve into the other continuously while remaining in the domain.

Definition (Null-homotopic). A closed curve γ : ra, bs Ñ U is null-homotopic in U if it is homotopic to a
constant curve in U (image equal to one point in U).

Theorem (Null-homotopic implies homologous to zero). If γ0, γ1 : ra, bs Ñ U are homotopic closed curves
in U , then Ipγ0;wq “ Ipγ1;wq for every w P CzU . In particular, if a closed curve γ in U is null-homotopic in
U , then it is homologous to zero in U .

Corollary. If γ0, γ1 : ra, bs Ñ U are homotopic closed curve in U , then

ż

γ0

fpzq dz “

ż

γ1

fpzq dz

for any holomorphic function f : U Ñ C.
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5.3 Simply Connected Condition

Definition (Simply connected). A domain U is simply connected if every closed curve in U is null-homotopic
in U .

Theorem (Cauchy’s theorem for simply connected domains). If U is simply connected, then

ż

γ
fpzq dz “ 0

for every holomorphic function f : U Ñ C and every closed curve γ in U .

It turns out the converse to this theorem is also true, but is harder to prove. Hence U is simply connected
if and only if

ş

γ fpzq dz “ 0 for every closed curve in U and every holomorphic function f on U . This

demonstrates an equivalence between simply connectedness (a topological property) and the validity of the
Cauchy condition (an analytic condition).

6 Singularities

Begin with some motivation for this section. For a holomorphic function g we may want to find
ş

γ gpzq dz
where there are several “bad” points or singularities in the domain.

6.1 Isolated, Removable and Essential Singularities

Definition (Isolated singularity). Let U Ă C be open. If a P U and f : Uztau Ñ C is holomorphic, then we
say f has an isolated singularity at a.

Definition (Removable singularity). An isolated singularity a of f is a removable singularity of f if f can
be defined at a so that the extended function is holomorphic on U .

Proposition (Characterising removable singularities). Suppose U is open, a P U and f : Uztau Ñ C is
holomorphic. Then the following are equivalent:
(a) f has a removable singularity at a
(b) limzÑa fpzq exists in C
(c) there is a disk Dpa, εq Ă U such that |fpzq| is bounded in Dpa, εqztau

(d) limzÑapz ´ aqfpzq “ 0.

Definition (Pole). If a P U is an isolated singularity of f , then a is a pole of f if

lim
zÑa

|fpzq| “ 8.

Definition (Essential singularity). If a P U is an isolated singularity of f , then a is an essential singularity
of f if a is neither a removable singularity nor a pole (i.e. limzÑa |fpzq| does not exist in r0,8s).

6.2 Characterising Poles

We have some results that we can use to characterise poles and singularities.

Proposition (Characterising poles). Let f : Uztau Ñ C be holomorphic. The following are equivalent:
(a) f has a pole at a
(b) there exist ε ą 0 and holomorphic h : Dpa, εq Ñ C with hpaq “ 0 and hpzq ‰ 0 for z ‰ a, such that
fpzq “ 1

hpzq
for z P Dpa, εqztau
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(c) there exists a unique k P N and unique holomorphic g : U Ñ C with gpaq ‰ 0 such that fpzq “ pz´aq´kgpzq

for z P Uztau. This k is the order of the pole.

We may remark that from the paq ùñ pcq relation, this means there is no holomorphic function on a
punctured disk f : Dpa,Rqztau Ñ C such that |fpzq| Ñ 8 as z Ñ a at the rate of a negative non-integer
power of |z ´ a|.

Definition (Meromorphic). Let U be open and S Ă U be a discrete subset of U (so all points in S are
isolated points). If f : UzS Ñ C is holomorphic and each a P S is either a removable singularity or a pole of
f , then f is a meromorphic function on U .

Theorem (Casorati-Weierstrass Theorem). If f : Uztau Ñ C is holomorphic and a P U is an essential
singularity of f , then for any ε ą 0, the set fpDpa, εqztauq is dense in C.

Theorem (Picard’s Theorem). If f : Uztau Ñ C is holomorphic and a P U is an essential singularity of f ,
then there is w P C such that for any ε ą 0, Cztwu Ă fpDpa, εqztauq, i.e. in any neighbourhood Dpa, εqztau,
f attains all complex values except possibly one.

6.3 Laurent Expansions

The Laurent expansion allows us to generalise the concept of a Taylor expansion in a way that makes it easier
to work with singularities.

Theorem (Laurent expansion). Let f be holomorphic on an annulus A “ tz P C : r ă |z ´ a| ă Ru where
0 ď r ă R ď 8. Then
(i) f has a unique convergent series expansion

fpzq “

8
ÿ

n“´8

cnpz ´ aqn

where cn are constants
(ii) for any ρ P pr,Rq, the coefficient cn is given by

cn “
1

2πi

ż

BDpa,ρq

fpzq

pz ´ aqn`1
dz

(iii) if r ă ρ1 ď ρ ă R then the (i) series converges uniformly on the set tz P C : ρ1 ď |z ´ a| ď ρu.

Remark. This theorem shows that if f is holomorphic on an annulus, then f can effectively be written as a
sum of holomorphic functions defined on the outer disk and the region outside the inner disk respectively.

6.4 Classifying Singularities

Suppose f : Dpa,Rqztau Ñ C is holomorphic (so z “ a is an isolated singularity of f). Then by Laurent
series, there are unique tcnu P C with

fpzq “

8
ÿ

n“´8

cnpz ´ aqn

for z P Dpa,Rqztau. We can check that
(i) cn “ 0 for all n ă 0 ðñ z “ a is a removable singularity
(ii) c´k ‰ 0 for sum k ě 1, and c´n “ 0 for all n ě k ` 1 ðñ z “ a is a pole of order k
(iii) cn ‰ 0 for infinitely many n ă 0 ðñ z “ a is an essential singularity.
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7 The Residue Theorem

7.1 Residue Theorem Statement

Definition (Residue and principal part). Let f : Dpa,Rqztau be holomorphic. The coefficient c´1 of the
Laurent series of f in Dpa,Rqztau is called the residue of f at a, denoted Resf paq.
The principal part fp of f at a is defined by

fp :“
8
ÿ

n“1

c´npz ´ aq´n.

Theorem (Residue theorem). Let U be an open set, let ta1, a2, . . . , aku be a finite set, and let f :
Uzta1, . . . , aku Ñ C be holomorphic. If γ is any closed curve in U homologous to zero in U with aj R imgpγq

for all j, then

1

2πi

ż

γ
fpzqdz “

k
ÿ

j“1

Ipγ; ajqResf pajq.

7.2 Computing Residues

There are a few useful facts for calculating residues. There are also two lemmas that make it easier to com-
pute line integrals of functions. Jordan’s lemma is useful for “integrals on large semicircles”, while the other
lemma is useful for “integrals on small circular arcs”.

Lemma (Jordan’s lemma). Let f be a continuous complex-valued function on the semicircle C`
R “ imgpγ`

R q

in the closed upper half-plane H, where R ą 0 and γ`
R ptq “ Reit, 0 ď t ď π. Then for α ą 0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

γ`
R

fpzqeiαz dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď
π

α
sup
zPC`

R

|fpzq|.

In particular if f is continuous in HzDp0, R0q and if supzPC`
R

|fpzq| Ñ 0 as R Ñ 8, then for each α ą 0,

ż

γ`
R

fpzqeiαz dz Ñ 0

as R Ñ 8.

Lemma (Integrals on small circular arcs). Let f be holomorphic in Dpa,Rqztau with a simple pole at z “ a.
If γε : rα, βs Ñ C is the circular arc γεptq “ a ` εeit, then

lim
εÑ0`

ż

γε

fpzqdz “ pβ ´ αqiResf paq.

7.3 The Argument Principle

Theorem (Argument principle). Let f be a meromorphic function on a domain U with finitely many zeros
at points a1, . . . , ak and finitely many poles at points b1, . . . , bl. If γ is a closed curve in U homologous to
zero in U with all ai, bj not in its image, then

1

2πi

ż

γ

f 1pzq

fpzq
dz “

k
ÿ

i“1

Ipγ; aiqordf paiq ´

l
ÿ

j“1

Ipγ; bjqordf pbjq.

We can interpret 1
2πi

ş

γ
f 1pzq

fpzq
dz as the number of times the image curve f˝γ winds around 0 as we move along γ.
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Definition (Curve bounding domain). Let Ω be a domain and let γ be a closed curve in C. We say that γ
bounds Ω if Ipγ;wq “ 1 @w P Ω, and Ipγ;wq “ 0 @w P CzpΩ Y imgpγqq.

Corollary (Argument principle for domains bounded by closed curves). Let γ be a closed curve bounding a
domain Ω, and let f be meromorphic in an open set U containing Ω Y imgpγq. Suppose that f has no zeros
or poles on imgpγq, and precisely N zeros and P poles in Ω, counted with multiplicity. Then N and P are
finite, with

N ´ P “
1

2πi

ż

γ

f 1pzq

fpzq
“ Ipf ˝ γ; 0q.

7.4 Local Degree Theorem and Rouché’s Theorem

The local degree theorem relates the order of a zero at a point to the number of roots of an equation in a
small disk around that point.

Definition (Local degree). Let f be a holomorphic function on a disk Dpa,Rq and assume f is non-constant.
The local degree of f at a, written degf paq, is the order of the zero of fpzq ´ fpaq at z “ a. This is a finite
positive integer.

Theorem (Local degree theorem). Let f : Dpa,Rq Ñ C be holomorphic and non-constant with degf paq “

d ą 0. Then D r0 ą 0 such that for any r P p0, r0s there is ε ą 0 such that for every w with 0 ă |fpaq´w| ă ε,
the equation fpzq “ w has precisely d distinct roots in Dpa, rqztau.

Corollary (Open mapping theorem). A non-constant holomorphic function on a domain maps open sets to
open sets.

Theorem (Rouché’s theorem). Let γ be a closed curve bounding a domain Ω, and let f, g be holomorphic
functions on an open set U containing Ω Y imgpγq. If |fpzq ´ gpzq| ă |gpzq| @z P imgpγq, then f and g have
the same number of zeros in Ω, counted with multiplicity.
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