PQM - Clebsch-Gordan Decomposition

Abigail Tan January 3, 2023

In Part II Representation Theory, the irreducible representations of SU(2) are denoted by V_n (dimension n + 1) where $n \in \mathbb{N}$. We showed that tensor products of such V_n decompose as $V_n \otimes V_m \cong V_{n+m} \oplus V_{n+m-2} \oplus \cdots \oplus V_{|n-m|}$. The same applies in the context of quantum mechanics (spin operators obey the SU(2) Lie algebra), but instead these same representations are indexed by a parameter $l \in \{0, 1/2, 1, 3/2, \ldots\}$ where V_l has dimension 2l + 1. Write

$$V_l \otimes V_k \cong V_{l+k} \oplus V_{l+k-1} \oplus \cdots \oplus V_{|l-k|+1} \oplus V_{|l-k|}.$$

Write $\underline{s} = \{ |s\rangle, |s-1\rangle, \dots, |-s\rangle \}$, a space of dimension 2s + 1.

1

For example, a system of three spin-1 particles can be written as $\underline{1} \otimes \underline{1} \otimes \underline{1}$, which decomposes as

$$\otimes \underline{1} \otimes \underline{1} = \underline{1} \otimes (\underline{0} \oplus \underline{1} \oplus \underline{2})$$
$$= (\underline{1} \otimes \underline{0}) \oplus (\underline{1} \otimes \underline{1}) \oplus (\underline{1} \otimes \underline{2})$$
$$= \underline{1} \oplus (\underline{0} \oplus \underline{1} \oplus \underline{2}) \oplus (\underline{1} \oplus \underline{2} \oplus \underline{3})$$
$$= 0 \oplus 1 \oplus 1 \oplus 1 \oplus 2 \oplus 2 \oplus 3.$$

This shows how many copies of each spin state there are in the combined state, and hence we can use this to find the degeneracies corresponding to spin eigenvalues (e.g. $1(1+1)\hbar = 2\hbar$ appears three times). Note both sides of the equation are states with dimension 27.