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I have left some proofs here in the form of exercises to be worked through.
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1 Semidirect Products

(Notes taken roughly from brilliant.org, with a few additional own comments).

Recall that the direct product expresses a group as a product of subgroups (e.g. G×H). We can generalise
the idea of expressing a group in terms of its subgroups using the semidirect product.

1.1 Inner Semidirect Product

Let G be a group with H ≤ G and N E G. If certain conditions are satisfied, then we can write G as the
inner semidirect product of N and H, written G = N oH.

Theorem 1 (Inner Semidirect Product). Let G be a group with H ≤ G and N E G. Then the following
statements are equivalent:

1. NH = G and N ∩H = {e}.

2. Every g ∈ G can be uniquely written in the form g = nh for n ∈ N , h ∈ H.

3. Define ψ : H → G/N by ψ(h) = hN . Then ψ is an isomorphism.
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(If these all hold, then we write G = N oH).

Proof. Left as an exercise. Show equivalence by showing that 1 =⇒ 2, 2 =⇒ 3 and 3 =⇒ 1.

Examples.

1. G = S3: without loss of generality, choose N = 〈(123)〉 and H = 〈(12)〉. Then G = N oH.

2. G = Sn, N = An, H ∼= C2 gives Sn = An oH.

3. Let D2n = 〈r, s | rn = e, s2 = e, rs = sr−1〉. Then D2n = 〈r〉o 〈s〉.

Proposition 1. If |N ||H| = |G| then NH = G ⇐⇒ N ∩H = {e}.

Proof. Left as an exercise. Use the Second Isomorphism Theorem, which states that

H ≤ G,N E G =⇒ H ∩N E H and H/(H ∩N) ∼= HN/N.

So if this condition holds then we only have to check one of the two conditions in statement 1 of Theorem 1.
We can also check that if |N ||H| = |G| and hcf(|N |, |H|) = 1 then N ∩H = {e}, by Lagrange’s theorem.

1.2 Outer Semidirect Product

We can take the opposite approach and consider two abstract groups, together with a relationship given by
some homomorphism. Then we can construct a new group using certain properties.

Definition 1 (Automorphism). An automorphism of a group G is an isomorphism φ : G → G, i.e. an
isomorphism from the group to itself. The group consisting of automorphisms of G is denoted Aut(G).

Definition 2 (Outer Semidirect Product). LetN andH be groups. Let φ : H → Aut(N) be a homomorphism
sending elements h ∈ H to automorphisms φh of N . Then the outer semidirect product G = N oφ H is the
set of ordered pairs (n, h) with n ∈ N,h ∈ H related by

(n1, h1) · (n2, h2) = (n1φh1(n2), h1h2). (1.2.1)

Exercise. Verify that G in Definition 2 is a group.

Notice also that the outer semidirect product is a generalisation of the direct product. If φ : H → Aut(N) is
chosen to be the trivial automorphism, sending every element to itself, then n1φh1(n2) = n1n2 and equation
1.2.1 defines the direct product N ×H.

An outer semidirect product can be written as an inner semidirect product. Given groups N , H and a
homomorphism φ : H → Aut(N), the group G = N oφ H has a normal subgroup Ñ = {(n, e) : n ∈ N} and
a subgroup H̃ = {(e, h) : h ∈ H} such that G = Ñ o H̃. (We can check that Ñ is a normal subgroup of G).

In addition, an inner semidirect product can also be written as an outer semidirect product. Let G be a
group with subgroups N,H satisfying G = N oH. Then we can define a homomorphism φ : H → Aut(N)
such that G ∼= N oφ H. Here we define it.
For h ∈ H, define φh(n) = hnh−1 (notice this is in N as it’s normal - also note φh is bijective). Then we have

(n1h1)(n2h2) = n1(h1n2h
−1
1 )h1h2 = (n1φh1(n2))(h1h2)

which resembles the group law for the outer semidirect product. Note that this shows that the bijection
G→ N oφ H defined by nh 7→ (n, h) is also a homomorphism.

Example. Let

G =

{(
a b
0 1

)
: a, b ∈ R, a 6= 0

}
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with multiplication as the operation. Let H be the subgroup of G consisting of diagonal matrices

(
a 0
0 1

)
and let N be the subgroup of G consisting of matrices of the form

(
1 b
0 1

)
. Then N E G, NH = G and

N ∩H = {e}, so we have G = N oH (inner semidirect product).

Now notice also that N ∼= R and H ∼= R∗, so we can find some homomorphism φ such that G ∼= RoφR∗. We
choose φ such that it sends a nonzero real number h to the automorphism of (R,+) given by multiplication
by h.
Note that G can be written as a group of affine transformations x 7→ ax+ b. (Affine transformations behave
like linear transformations, but do not necessarily have to fix the origin). Then matrix multiplication in G
corresponds to their composition.

Problem. Let N = C2 × C2 and H = C2. Consider the automorphism φ : H → Aut(N) which sends the
nontrivial element of H to the homomorphism (a, b) 7→ (b, a). What standard group is N oφ H isomorphic
to?

2 Abelian Groups

2.1 The 5/8 Theorem

This is an interesting result about abelian groups.

Theorem 2 (5/8 Theorem). Let G be a group. If the probability that two (not necessarily distinct) elements
randomly selected from G commute is greater than 5/8, then G is abelian.

Proof. A more illustrative way is to reframe the problem as the following question: “Given that a group is
non-abelian, what is the maximum probability that two randomly chosen elements commute?”. If we can
show that this is 5/8, then we will be done.

We start by considering a non-abelian group and trying to make it “as commutative as possible” without
being abelian. Let G be a non-abelian group and consider the centre Z of G. We know Z E G, so by
Lagrange, |G|/|Z| is an integer m. We can try to maximise |Z|/|G|, which takes the form 1/m.

If m = 1, then |Z| = |G|, making G abelian (contradiction). If m = 2 then G/Z = {Z, aZ} ∼= C2 for some
a /∈ Z which commutes with everything in Z. So G is generated by Z and a (which commutes with everything
in Z) and hence G is abelian (contradiction). Similarly, m cannot be 3 (in this case G/Z ∼= C3 and the same
argument applies).

Now, what if m = 4? If G/Z ∼= C4 then we have the same problem as before, but it may also be possible
that G/Z ∼= C2 × C2. In this case, G is generated by Z and two elements not in Z, and these two elements
do not necessarily commute. We can hence say that m ≥ 4 so |Z|/|G| ≤ 1/4.

We can also consider the maximum possible size of the centraliser CG of g ∈ G (non-abelian), where g is
not in the centre. This a proper subgroup of G so |G|/|CG(g)| is an integer at least 2. We hence have
|CG(g)|/|G| ≤ 1/2.

Now, given a random element g chosen from G, we can choose a (not necessarily distinct) second element h
from G. If g ∈ Z(G), then they must commute. If not, then they only commute if h ∈ CG(g). Hence

P(gh = hg) =
|Z(G)|
|G|

+

(
1− |Z(G)|

|G|

)
|CG(g)|
|G|

which is maximised when |Z(G)|/|G| and |CG(g)|/|G| are both maximised. Hence

P(gh = hg) ≤ 1

4
+

3

4
× 1

2
=

5

8
.

Therefore if the probability that they commute is greater than 5/8, then the group is necessarily abelian.
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Remark. The bound 5/8 is actually a tight bound: the non-abelian quaternion group Q8 has centre of size
2 (1/4 of the size of the group) and each non-central element commutes with exactly half of the elements.

Remark. We showed that |Z|/|G| is at most 1/4 for a non-abelian group. If we had instead used the bounds
1/2 or 1/3, then instead of 5/8 we would have got the bounds 3/4 and 2/3, which also work, but a better
one 5/8 can be found (which turns out to be the best possible bound).

2.2 Commutator Subgroups

2.2.1 Definitions

The commutator indicates to what extent a certain binary operation fails to be commutative.

Definition 3 (Commutator). Let G be a group and let g, h ∈ G. The commutator [g, h] of g and h is defined
by

[g, h] = ghg−1h−1.

Notice that [g, h] = e if and only if g and h commute. Here are some other important properties (which can
be verified elementarily).

1. Inversion: [g, h] = [h, g]−1

2. Conjugation: x[g, h]x−1 = [xgx−1, xhx−1]

3. For a homomorphism f : G→ H, have f([g, h]) = [f(g), f(h)]

In general, the set of all commutators in a group G does not form a subgroup (it is not closed under the
group operation). However, we can generate a subgroup using commutators. This commutator subgroup is
important because it is the smallest normal subgroup N such that G/N is abelian. The larger the commutator
subgroup, the “less abelian” the group can be said to be.

Definition 4 (Commutator subgroup). The commutator (or derived) subgroup, written [G,G], G(1) or G′,
of a group G is the subgroup generated by all its commutators.

By closure, every element of [G,G] takes the form [g1, h1][g2, h2]...[gn, hn] with gi, hi ∈ G. By the conjugation
property, for all x ∈ G we have

x[g1, h1][g2, h2]...[gn, hn]x−1 = [xg1x
−1, xh1x

−1][xg2x
−1, xh2x

−1]...[xgnx
−1, xhnx

−1]

and hence [G,G] is a normal subgroup of G.

2.2.2 Derived Series

The standard commutator subgroup of G is denoted G(1). The same construction can be iterated to form a
series of subgroups. We define

G(0) := G

and G(n) := [G(n−1), G(n−1)]

(i.e. G(n), the nth derived subgroup, is the subgroup generated by the commutators of G(n−1)).

This way we can obtain a “descending series” of sorts, made up of normal subgroups of G.

· · · E G(2) E G(1) E G(0) = G

If G is finite, then this series will terminate in a perfect group, which may or may not be trivial. If G is
infinite, then it may not terminate at a finite stage.

Definition 5 (Perfect group). A perfect group is a group G such that G = G(1), i.e. it is equal to its own
commutator subgroup.

Notice that all non-abelian simple groups are perfect groups. (Why?)
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2.2.3 Examples

Definition 6 (Abelianisation). Given a group G, its abelianisation is defined as the quotient Gab = G/[G,G].

Here are some examples/properties.

• A group G is abelian if and only if [G,G] is trivial (or equivalently G = Gab).

• A group G is perfect if and only if G = [G,G] (or equivalently Gab = {e}). This can be thought of as
being the “opposite” to an abelian group.

• A group G is solvable if there exists n ∈ N with G(n) = {e} (and otherwise non-solvable). The special
case n = 1 occurs when G is abelian (so solvable is a weaker property).

2.3 Classification of Finite Abelian Groups

2.3.1 Kronecker’s Theorem

Definition 7 (Direct sum). Let G be a group and let H1 and H2 be subgroups of G. We say G is the direct
sum of H1 and H2 (written G = H1 ⊕H2) if all of the following hold:

• H1 E G and H2 E G

• H1 ∩H2 = {e}

• G = 〈H1, H2〉 (i.e. G is generated by H1 and H2).

It follows that Cmn ∼= Cm ⊕ Cn if and only if m and n are coprime.

Exercise. Let G be a finite abelian group. Let n be the maximal order of an element of G. Show that ord(g)
divides n for all g ∈ G.
[Hint: first show that if hcf(a, b) = 1 then ord(a) ord(b) = ord(ab), then consider powers of a prime factor
and derive a contradiction.]

There are several formulations of a theorem called “Kronecker’s theorem” which are related. Here I have
given one version that I could find a proof for.

Theorem 3 (Kronecker’s Theorem). Let G be a finite abelian group. Then

G = A1 ×A2 × · · · ×As

where A1, A2, . . . are cyclic groups of orders n1, n2, . . . and each ni+1 divides ni.

Proof. Let n1 denote the maximal order among all the elements of G. Using the result in the above exercise,
we have an1 = e for all a ∈ G.
If a1 ∈ G has order n1, then we call elements a′ and a′′ equivalent relative to a1 if

a′ak1 = a′′

for some k. We can check that this is an equivalence relation, and the equivalence classes form a finite abelian
group G/〈a1〉. In particular, there is an equivalence class with maximal order n2, so for any representative a∗

of the class, we have that (a∗)n2 is the least of its powers equivalent to e. Since (a∗)n1 = e (so is equivalent
to it), we must have n2|n1.
Now if (a∗)n2 = ak1 and we raise both sides to n1/n2, then we get

e = (a∗)n1 = a
kn1/n2

1

so when k/n2 is set equal to m, we have anm1
1 = e from which it follows that m is an integer.
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The equation
a2a

m
1 = a∗

then defines an element a2 equivalent to a∗ whose nth power is not only equivalent to e, but also equal to it.
We now call elements a′, a′′ equivalent relative to a1, a2 if

a′aj1a
k
2 = a′′

for some h, k and similarly obtain a group of equivalence classes whose maximal order n3 divides n2, and a
representative a3 of the class of maximal order such that an3

3 = e.
This procedure terminates when we have a set of elements a1, a2, . . . , as such that any a is equivalent to e
relative to a1, a2, . . . , as; that is, when any a is expressible as

a = ah11 a
h2
2 . . . ahss .

It also follows that this expression is unique, since the equivalence classes relative to a1, . . . , as−1 must
constitute a cyclic group with as as a representative generator. An element a is therefore uniquely determined
by the integers h1, . . . , hs−1, which determine it relative to an equivalence class representative, and the integer
hs which determines the equivalence class representative itself, ahss .
Hence G is the direct product A1 ×A2 × · · · ×As where Ai is the cyclic group generated by ai and the order
ni of Ai is such that ni+1 divides ni.

Another related theorem is Kronecker’s decomposition theorem, which allows us to classify finite abelian
groups as direct sums of cyclic groups.

Theorem 4 (Kronecker’s decomposition theorem). An abelian group of order n can be written in the form

Zk1 ⊕ Zk2 ⊕ · · · ⊕ Zkm

where the ki are powers of primes and the ki multiply to n. This representation is unique up to permutations
of the summands.

For instance, an abelian group of order 15 can be written only as Z3⊕Z5 (which is the same as C3×C5
∼= C15)

so all abelian groups of order 15 are isomorphic. It is worth noting these two special cases:

• An abelian group of order p (p prime) must be isomorphic to Cp

• An abelian group of order p2 (p prime) is isomorphic to either Cp2 or Cp × Cp.

It follows from Kronecker’s decomposition theorem that the number of non-isomorphic abelian groups of
order n =

∏
i p
ei
i is

a(n) =
∏
i

P (ei)

where P (n) is the function giving the number of partitions of n. Hence a(n) is the product of the number of
partitions of each exponent in the prime factorisation of n.

Exercise. It follows from the above result that if an abelian group has order n with n = p1p2 . . . pk for
distinct primes pi, then the group is cyclic. Verify this. Can you find another method by which to prove this
result, which does not rely on Kronecker’s decomposition theorem?
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2.3.2 Using Sylow Subgroups

The Sylow theorems can be used to find out about the structure of abelian groups. Every subgroup of an
abelian group is normal, so np = 1 for all primes p dividing |G|. So there is a unique Sylow p-subgroup for
every such prime p.

Proposition 2. Let H and K be subgroups of an abelian group G, and suppose H ∩ K = {e}. Then
HK = {hk : h ∈ H, k ∈ K} is a subgroup of G, which is isomorphic to H ×K.

Proof. We can quite quickly check that HK is a subgroup. Since G is abelian, we can see that it is closed
under the operation:

(h1k1)(h2k2) = (h1h2)(k1k2) ∈ HK.
There is a natural homomorphism H × K → (h, k) 7→ hk. It is certainly surjective, and we can also check
that it is injective. If (h, k) 7→ e, then hk = e =⇒ h = k−1 ∈ K. But H ∩K = {e} so h = k = e and hence
the kernel is trivial, as required. We therefore have an isomorphism.

Note that if H and K are finite with coprime orders, then their intersection is trivial by Lagrange’s theorem
(order of intersection divides both orders), so this proposition applies to them.

Consider repeatedly applying the proposition to the Sylow p-subgroups of an abelian group G. Suppose |G| =
pα1
1 pα2

2 . . . pαk
k . Let Hi be the unique Sylow pi-subgroup. Then the proposition shows that H1H2

∼= H1 ×H2.
We can continue in this way (technically, inductively) to give

G ∼= H1 ×H2 × · · · ×Hk.

Hence we have that a finite abelian group G is isomorphic to the direct product of its Sylow subgroups.

2.4 Fundamental Theorem of Finite Abelian Groups

Theorem 5 (Fundamental Theorem of Finite Abelian Groups). Every finite abelian group is an internal
direct product of cyclic groups whose orders are prime powers. This product is unique up to reordering.

Proof. Let G be a finite abelian group. Every finite abelian group can be expressed uniquely as the product of
prime-power order groups (as seen in subsection 2.3.2). We also know that an abelian group of prime-power
order is a direct product of cyclic groups, so we apply this to each factor. Hence G must be a product of
prime-power order cyclic groups. We then only have to show that the secondary factorisation is unique.
Suppose that |G| = pk with p prime. Suppose that G can be factorised in two ways:

G = H1 ×H2 × · · · ×Hm = K1 ×K2 × · · · ×Kn

where Hi and Ki are all nontrivial cyclic subgroups with

|H1| ≥ |H2| ≥ · · · ≥ |Hm|

and
|K1| ≥ |K2| ≥ · · · ≥ |Kn|.

We proceed by (strong) induction on k. For k = 1, the factorisation is unique, as groups of prime order are
cyclic.
Now assume it is true for all abelian groups of order pl, where l < k. Since G is abelian, we have that
Gp = {xp : x ∈ G} is a proper subgroup of G (can check). Hence

Gp = Hp
1 × · · · ×H

p
m′ = Kp

1 × · · · ×K
p
n′

where m′ is the largest integer i with |Hi| > p and n′ is the largest integer j with |Kj | > p. This ensures
that the above direct products do not have trivial factors. By Cauchy’s theorem, we have |Gp| < G (as there
must exist an element of order p). Then we can apply the induction hypothesis. It follows that

m′ = n′
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and |Hp
i | = |K

p
i | for i = 1, 2, . . . ,m′.

We know that |Hi| = p|Hp
i | and |Ki| = p|Kp

i |. It then follows that

|H1||H2| . . . |Hm′ |pm−m′
= |G| = |K1||K2| . . . |Kn′ |pn−n′

and therefore m−m′ = n− n′. Since m′ = n′, we have m = n and the factorisation is unique.

3 Sylow Theorems

The Sylow theorems are important for analysis of particular subgroups of finite groups, called Sylow sub-
groups.

Definition 8 (p-group). A p-group is a group whose order is a power of p, where p is prime. If it is a
subgroup of another group, then it is called a p-subgroup.

Definition 9 (Sylow p-subgroup). Let G be a group and p be a prime dividing the order of G. A Sylow
p-subgroup is a subgroup with order a power of p and with index coprime to p. (Note: this means that the
order of the Sylow p-subgroup is the maximal power of p dividing |G|, not just any power).

The first Sylow theorem guarantees the existence of a Sylow subgroup of a group G for any prime dividing
its order. The second Sylow theorem states that all Sylow subgroups with a given order are conjugate. The
third Sylow theorem gives information about the number of Sylow subgroups.

3.1 Theorems and Proofs

Let G be a finite group and let p be a prime dividing |G|. We write |G| = kpn with n ≥ 1 and p - k.

Theorem 6 (First Sylow Theorem). There exists a Sylow p-subgroup of G. That is, there is a subgroup
H ≤ G of order pn.

Proof. Let T be the set of all subsets of G containing exactly pn elements; that is T = {S ⊆ G : |S| = pn}.
Let N = |T |.
Now N is the number of ways pn can be chosen from a set of pnk elements. We hence have

N =

(
pnk

pn

)
.

We use the following result (see footnote1 for proof):(
pnk

pn

)
≡ k (mod p)

and hence
N ≡ k (mod p).

We now let G act on T by the rule
∀S ∈ T : g(S) = gS

(i.e. the left coset action, except S is not necessarily a subgroup - can check it’s an action).
Let T have r orbits under this action. The orbits, represented by {S1, S2, . . . , Sr}, partition T , so we have

T = Orb(S1) ∪Orb(S2) ∪ · · · ∪Orb(Sr)

1Start by proving (a + b)p ≡ ap + bp (mod p) and then (a + b)p
n

≡ apn + bp
n

(mod p) by induction. Then compare the
coefficients of bp

n

in the expansion of (a + b)p
nk (mod p) in two different ways.
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and
|T | = |Orb(S1)|+ |Orb(S2)|+ · · ·+ |Orb(Sr)|.

If every orbit has size divisible by p, then p|N . But this cannot be true since N ≡ k (mod p) with p - k. So
at least one orbit has size not divisible by p.
Without loss of generality, suppose that Orb(S1) has size not divisible by p. Let s ∈ S1. We claim that
Stab(S1)s = S1.

To show this, observe that by Orbit-Stabiliser, since pn divides G but p does not divide |Orb(S1)|, we must
have that pn divides | Stab(S1)| so | Stab(S1)| ≥ pn.
Notice also that Stab(S1) = {g ∈ G : gS1 = S1} and hence for all s ∈ S1, g ∈ Stab(S1) we have gs ∈ S1 and
therefore Stab(S1)s ⊆ S1. Hence |Stab(S1)| = |Stab(S1)s| ≤ |S1| = pn.

Therefore |Stab(S1)| = pn. But Stab(S1) ≤ G so Stab(S1) is a subgroup of G containing pn elements, so is
a Sylow p-subgroup as required.

Definition 10 (Normaliser). Let G be a group and let S be a subset of G. Then the normaliser of S in G
is the set NG(S) defined by

NG(S) = {g ∈ G : gSg−1 = S}.

We can check that NG(S) is a subgroup of G. It also holds that if H ≤ G then NG(H) is the largest subgroup
of G containing H as a normal subgroup (not proved at this time).

Lemma 1 (Normaliser of Sylow p-subgroup). Let P be a Sylow p-subgroup of a finite group G. Let NG(P )
be the normaliser of P . Then any p-subgroup of NG(P ) is contained in P , and in particular, P is the unique
Sylow p-subgroup of NG(P ).

Proof. Will do later.

Lemma 2. Let P be a Sylow p-subgroup of the finite group G and let Q be any p-subgroup of G. Then Q
is a subset of a conjugate of P .

Proof. Define T = {gPg−1 : g ∈ G}, which is the set of all distinct G-conjugates of P .

We claim that |T | ≡ 1 (mod p).

To show this, consider the action h(S) = hSh−1 with h ∈ P and S ∈ T . (We can check that this is an action).
We have S ∈ T =⇒ ∃ g ∈ G : S = gPg−1 =⇒ h(S) = h(gPg−1)h−1 = (hg)P (hg)−1 =⇒ h(S) ∈ T , so the
action is also closed for S ∈ T . We now consider the orbits and stabilisers of T under this action.
Notice that hPh−1 = p so Orb(P ) = {P}. We will show that P is the only element of T with a singleton
orbit.
If gPg−1 has one element in its orbit, then xgPg−1x−1 = gPg−1 for all x ∈ P . Hence g−1(xgPg−1x−1)g =
g−1(gPg−1)g = P so g−1xg ∈ NG(P ). We have |g−1xg| = |x| (conjugate, so same order) and hence P1 =
g−1Pg is a p-subgroup of NG(P ) (all orders powers of p). Since |P | = |P1|, we have that P1 is a Sylow
p-subgroup of NG(P ). By Lemma 1, P1 = P so gPg−1 = P . Hence only P has an orbit of size 1.

Therefore for any g /∈ P , we have |Orb(gPg−1)| > 1. Since Stab(S) ≤ P for all S ∈ T , we have that |Stab(S)|
divides |P | = pn, so by Orbit-Stabiliser each orbit size is also a power of p. Hence each orbit size is 1 mod p
if the size is 1 and 0 mod p otherwise. The orbits partition the set, so |T | ≡ 1 (mod p) as required.

We now consider orbits of T under conjugation by elements of Q. Since Q is a p-subgroup, by the same
argument as above, every orbit has size a power of p. Since |T | ≡ 1 (mod p), there is at least one orbit
of size 1. So there is an element g with x(gPg−1)x−1 = gPg−1 for all x ∈ Q. As previously, we have
g−1Qg ⊆ NG(P ). So by Lemma 1 we have g−1Qg ⊆ P . Thus Q ⊆ gPg−1 as required.

Theorem 7 (Second Sylow Theorem). All the Sylow p-subgroups of a finite group are conjugate.

Proof. Suppose P and Q are Sylow p-subgroups of G. By Lemma 2, Q is a subset of a conjugate of P . But
|P | = |Q|, so Q must equal a conjugate of P .
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Lemma 3. Let G be a finite group with |G| = kpn with p - k and n > 0. Let T = {S ⊆ G : |S| = pn} and
let G act on T by g(S) = gS. Then there are exactly as many Sylow p-subgroups as there are orbits whose
length is not divisible by p. Each such orbit contains exactly one Sylow p-subgroup.

Proof. Will do later.

Theorem 8 (Third Sylow Theorem). Let G be a finite group with |G| = pnk, n ≥ 1, p - k (as before). Let r
be the number of Sylow p-subgroups. Then

• r ≡ 1 (mod p)

• r|k

• r = |G|/|NG(H)| where H is any Sylow p-subgroup.

Proof. First, we will show that r ≡ 1 (mod p). We start similarly to the proof of the first Sylow theorem.
Let T = {S ⊆ G : |S| = pn}, the set of all subsets of G with exactly pn elements. Then

|T | =
(
pnk

pn

)
.

Let G act on T by g(S) = gS = {x ∈ G : x = gs : s ∈ S}.
We write out the partition equation

|T | = |Orb(S1)|+ |Orb(S2)|+ · · ·+ |Orb(Sr)|+ |Orb(Sr+1)|+ · · ·+ |Orb(Ss)|

noting that by Lemma 3 we have that each of Orb(Si) for i = 1, 2, . . . , r contains exactly one Sylow p-subgroup.
In addition, k divides the size of every orbit (as Stab(S) is a p-subgroup for all S so by Orbit-Stabiliser, k
must divide Orb(S) not Stab(S)). For i = 1, 2, . . . , r, we have

|G| = |Orb(Si)× | Stab(Si)| = pn|Orb(Si)| =⇒ |Orb(Si)| = k.

As we have seen, each of the rest of the orbits are divisible by both k and p (again by Lemma 3). Hence for
some m ∈ Z we have

|T | =
(
pnk

pn

)
= kr +mpk.

But notice that this applies to the special case where G = Cpnk. Here, there is exactly one subgroup for each
divisor of pnk, and in particular, exactly one subgroup of order pn. Hence r = 1 in this case. So there exists
m′ ∈ Z with (

pnk

pn

)
= k +m′pk

so we can equate these expressions:

kr +mpk = k +m′pk =⇒ r +mp = 1 +m′p =⇒ r − 1 = p(m′ −m) =⇒ r ≡ 1 (mod p).

We now prove the next two results.
By Orbit-Stabiliser, the number of conjugates of a Sylow p-subgroup P is equal to the index of NG(P ). It then
follows that r = |G|/|NG(H)| as required. Then by Lagrange’s theorem, the number of Sylow p-subgroups r
divides |G|. We know that r ≡ 1 (mod p) so we have r - p and hence r - pn. Therefore r|k as required.
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3.2 Examples

Example. Identify the Sylow subgroups of S4.
We have |S4| = 24 = 23×3, so the Sylow 2-subgroups have order 8. By the third Sylow theorem, the number
of Sylow 2-subgroups n2 divides 3 and is congruent to 1 mod 2. We observe that D8 ≤ S4 (as it permutes the
vertices of a square). Three such copies of D8 can be generated: either from (12)(34) and (1324), or (13)(24)
and (1234), or (14)(23) and (1243). As n2|3, these are all the Sylow 2-subgroups.
The Sylow 3-subgroups are generated by 3-cycles such as (123) and there are 8 such 3-cycles, so four subgroups
(each contains two). So n3 = 4. This agrees with n3|8 and n3 ≡ 1 (mod 3). The third Sylow theorem also
predicts that NS4(H) is a subgroup of order |S4|/n3 = 24/4 = 6. Let H = 〈(123)〉 be one of the Sylow
3-subgroups. Then NG(H) is a copy of S3 inside S4 (interpreted as all the permutations fixing 4).

Note that any conjugate of a Sylow p-subgroup is also one, so if np = 1 then it must be normal.

Example. Show that there is no simple group G of order 30.
We have 30 = 2 × 3 × 5, so the Sylow subgroups are isomorphic to C2, C3 and C5 respectively. The group
is simple so we have n2, n3, n5 6= 1. Consider n3|10 and n3 ≡ 1 (mod 3) which implies n3 = 10. They are
distinct, so intersect only in the identity. Therefore there are 20 elements of order 3 in G.
Now consider n5. We have n5|6 and n5 ≡ 1 (mod 5), so n5 = 6. Any pair intersects only trivially, so there
are 4× 6 = 24 elements of order 5 in G. So there are at least 1 + 20 + 24 = 45 elements in G, a contradiction
since |G| = 30. Hence no simple group has order 30.
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