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1 Vector Spaces

1.1 Quotient Spaces

Let U < V. The quotient space V /U is the abelian group V /U equipped with the scalar multiplication
FxV/U—-V/U with (\,v+U) — Av+U.

1.2 Steinitz Exchange Lemma

Let V' be a finite-dimensional vector space. Take (v1,...,v,,) linearly independent and take (w1, ..., wy,)
spanning V. Then m < n and up to reordering, (vi,...,Vm, Wmi1,...,wy,) spans V.

1.3 Direct Sum Equivalence

The following are equivalent conditions for a sum of vector spaces to be a direct sum:
. k k

(i) 2 Vi=@®i Vi

i) V1<i<k,Vin (Z]ng) = {0}

(iii) For any basis B; of Vj, B := UB; is a basis of >,/ ; V;.

2 Change of Basis

2.1 Change of Basis Formula

Let o : V. — W be linear. Let B = {v1,...,v,}, B = {v],...,v.}, C = {wy,...,wn}, C" = {w),...,w,}.
We define
P= IdB’,B = ([UII]B,...,[U;.L]B)

Q =Ido o = ([wile,- -, [wy]e)
then if A = [a]p,c and A" = [a]p/ ¢, then A" = QAP

2.2 Rank Lemma

Let V, W be vector spaces of dimension n and m respectively. Let o : V' — W be a linear map. Then there
exists a basis B of V and C' of W such that

[a]B,c = (%)



where r satisfies dim(ker &) = n — r. It follows that any m x n matrix is equivalent to

(515)

for some r = r(«a), and hence by transitivity two matrices are equivalent if and only if they have the same
column (or row) rank.

3 Dual Spaces and Maps

3.1 Dual Spaces
Let V be a vector space over F. Then the dual of V', written V*, is defined by
V*=L(V,F)={a:V — F linear}.

3.2 Dual Basis
Suppose V has a finite basis B = {e1,...,e,}. Then there exists a basis for V* given by B* = {e1,...,e,}

where
n
Ej Zaiei :aj
=1

for 1 < j < n,soej(e;) = d;j.

3.3 Annihilator
If U < V, the annihilator of U is
U’ ={aeV*VueU a(u) =0}
3.4 Dual Map
Let V and W be vector spaces with a: V' — W linear. Then o : W* — V* ¢ — o« is a linear map called
the dual map of a.
3.5 Bilinear Forms

Let U and V be vector spaces. Then ¢ : U x V — F'is a bilinear form if it is linear in both components.

4 Determinant

4.1 Determinant Definition

Let A e M,,(F) and let a;; be the components of A. Then

det A = 2 8(0’)&0(1)16LG(2)2 -+ Og(n)n-

o€S,

We can check that the determinant of an upper (or lower) triangular matrix is zero.

4.2 Determinant of Block Triangular Matrices
Let Ae My (F),Be M;(F),C € My, (F). Let

- ()

then det N = det Adet B. An analogous result holds for the determinant of block triangular matrices.



4.3 Adjugate Matrix

Let A e M, (F). For 1 <i,j < n, we define Azfj € M, —1(F) by removing the ith row and jth column from
A. Then we have

det A = Z (—1)i+jaij det Az}
=1

and adj A is defined by [adj A];; = (—1)**7 det(A;). Then A7t = LLoadj A

4.4 Cramer Rule

Let A be a square n x n matrix and invertible. Let b € F™. Then the unique solution to Ax = b is given by

€Tr; =

A
dot 4 det(43)

where A is found by replacing the ith column of A by b.

4.5 Triangulability

We say « is triangulable if it is similar to an upper triangular matrix. Over C every matrix is triangulable.
For a € L(V), « is triangulable if and only if x,(¢) can be written as a product of linear factors over F:

Xa(t) = CH?:l(t —Ai)-

5 Diagonalisability and Minimal Polynomial

5.1 Sharp Criterion of Diagonalisability

Let V' be a finite-dimensional vector space over F. Then « is diagonalisable if and only if there exists a
polynomial p which is a product of distinct linear factors and has p(«) = 0.
For a, § € L(V') diagonalisable, there exists a basis in which both are diagonal if and only if o and 5 commute.

5.2 Projection Operators

Let a be an endomorphism of V' and suppose « satisfies p(a) = 0 for some p a product of distinct linear
factors

p(t) = | [(t=X).

.
Il B
— :]

Define the polynomials

so by definition ¢;(\;) = d;;. We can check that ¢(t) := ¢i(¢) + - - + qr(t) = 1 for all ¢.

Define projection operator 7; = g;j(c) which is also an endomorphism of V. Then by construction we have
> m =1d and mm; = 0 for i # j.

5.3 Minimal Polynomial Definition

Let V be a finite-dimensional vector space over F. The minimal polynomial m,, of « is the nonzero polynomial
with smallest degree such that m(«) = 0.

5.4 Algebraic and Geometric Multiplicity

Let A be an eigenvalue of «, let a) and gy be the algebraic and geometric multiplicities, and let c) be the
multiplicity of A as a root of the minimal polynomial. Then 1 < gy < a) and 1 < ¢y < ay.



5.5 Equivalence of Diagonalisability Conditions

The following are equivalent:

(i) « is diagonalisable

(ii) ay = gy for all eigenvalues A of «
(iii) ¢\ = 1 for all eigenvalues A of a.

6 Jordan Normal Form

6.1 Jordan Normal Form Definition

A Jordan normal form matrix contains Jordan blocks on the diagonal. A Jordan block has the form J,,,(A) = A
for m = 1 and for m = 2 we have J,,(\) of the following form.

A1l - 0
0 A

E 1
0 0 A

Every complex-valued square matrix is similar to a unique Jordan normal form matrix, up to reordering of

Jordan blocks.

6.2 General Eigenspace Decomposition

In V, let A1,..., A; be the distinct eigenvalues of a. If
ma(t) = (t—A)P . (E— M)

for some ¢; then
k

V-8

=1

J
where V; = ker((ov — A\;1d)%).

6.3 Multiplicity Properties

Let J,, be a Jordan block, then (.J,, — AId) is nilpotent. Then on the JNF matrix, ay is the sum of sizes of
blocks with eigenvalue A, gy is the number of blocks with eigenvalue A, and c) is the size of the largest block
with eigenvalue A.

7 Bilinear Forms

7.1 Diagonalisation

To diagonalise the bilinear form ¢ i.e. write PT[¢]P = D, we require A = AT.

7.2 Quadratic Forms

A map Q : V — F is a quadratic form if 3 a bilinear form ¢ : V xV — F st. Vv eV, Q(v) = ¢(v,v).
If @ :V — F is a quadratic form, then 3! a symmetric bilinear form ¢ : V x V — F st. Q(u) = ¢(u,u)
Vu € V (see the polarisation identity).



Theorem. Let ¢ : V x V — F be a symmetric bilinear form on finite dimensional V. Then 3 a basis B of
V s.t. [¢]p is diagonal.

Corollary. For F' = C, dimV < o and ¢ a symmetric bilinear form on V: 3 B basis of V s.t.

s = (4 1i7)

where 7 is the rank of ¢. It follows that every n x n symmetric matrix over C is congruent to a unique matrix
of the above form.

Corollary. Let F =R, dimV =n and ¢ : V x V — R be symmetric. Then 3 a basis B = (v1,...,v,) s.t.

for some p,q = 0 with p + g = r(¢). We call s(¢) := p — ¢q the signature of ¢.

Theorem (Sylvester’s law). Let F' = R and dim V' = n < o0. If a real symmetric bilinear form is represented
by the above matrix form in two bases B and B’ with p,p’ and ¢, ¢’ respectively, then p = p’ and ¢ = ¢'.

8 Sesquilinear Forms

8.1 Definition

Let V and W be vector spaces over C. A sesquilinear form on V x W is a function ¢ : V x W — C s.t.
(1) Qb()\]_vl + >\2025 U)) = )\Q(U]_, U)) + )\ﬁb(UZa UJ)

(i) o(v, Mwr + Aawz) = Ap(v,w1) + Aad(v, wa).

8.2 Change of Basis

Let ¢ : V. x W — C be sesquilinear and let B = (vy,...,vy) and C = (wy,...,w,) be bases of V and W.
Then

¢(v,w) = [v]5 [¢]B.c [w]e-
Let B, B’ be bases for V and C,C" be bases for W. With P = [Id]p p and Q = [Id]¢v ¢, we have

8.3 Hermitian Forms

A sesquilinear form ¢ : V x V. — C is Hermitian if Yu,v € V, ¢(u,v) = ¢(v,u). A sesquilinear form is
Hermitian if and only if for any basis B of V, [¢]s = [¢]%-

8.4 Polarisation Identity

A Hermitian form ¢ on a complex vector space V is entirely determined by the associated quadratic form
Q:V >R, v— ¢(v,v) via

o(u,v) = %(Q(u +v) — Q(u—v) +iQ(u + iv) —iQ(u — iv)).

8.5 Skew-Symmetric Forms

For F = R, the bilinear form ¢ : V x V — R is skew-symmetric if ¢(u,v) = —¢(v, u) for all u,v e V.



9 Inner Product Spaces

9.1 Definition

Let V' be a vector space over R or C. An inner product on V' is a positive definite symmetric (or Hermitian)
form ¢ on V.
We can prove standard properties such as the triangle and Cauchy-Schwarz inequalities.

9.2 Parseval’s Identity

Let dim V' = n < oo have an orthonormal basis (e, ..., e,). Then
n n
Cu,vy = Y uyeixv ey and lul]> = Y [Cu el
i=1 i=1

9.3 Gram-Schmidt

Let V be an inner product space. Let (v;)ier be a countable, linearly independent family of vectors in V.
Then there exists a family (e;);e; of orthonormal vectors with the same span as (v;)ier. (See lecture 21 for
the procedure).

10 Self-Adjoint and Unitary Operators

10.1 Orthogonal Complement and Projection

Let V be an inner product space with V;, Vo < V. V is the orthogonal direct sum of V; and V5 if
HV=Vioh

(ii) V(vl,vg) S V1 X VQ, <1)1, 1)2> =0.

Then we write V = V] & V5.

For W <V, we define the orthogonal of W, W, by
Wt = {ve V|Vwe W, {v,w) = 0}.

We can check that V = W @ W+,

10.2 Adjoint Maps

Let V, W be finite dimensional inner product spaces and let o € L(V,W). Then there is a unique linear map
af W > Vst Vio,w) eV xW
(e(v),w) = (v, " (w)).

Moreover if B, C are orthonormal bases of V, W respectively, then

[a*]es = ([e]Bo)”

11 Spectral Theory

11.1 Self-Adjoint Maps

Let a € L(V) be self-adjoint, i.e. « = a*. Then

(i) « has real eigenvalues

(ii) distinct eigenvectors of « are orthogonal

(iii) V has an orthonormal basis of eigenvectors of a.



This corresponds to the following:

Corollary. Let A be a symmetric or Hermitian matrix over R or C. Then there is an orthogonal (or unitary)
matrix P s.t. PTAP (or PTAP) is diagonal and has real-valued entries.

11.2 Unitary Maps

Let a € L(V) be unitary, i.e. a* = a~!'. Then

(i) all eigenvalues of « lie on the unit circle

(ii) eigenvectors corresponding to different eigenvalues are orthogonal

(iii) if V' is a finite dimensional complex inner product space, then V' has an orthonormal basis consisting of
eigenvectors of a.

This corresponds to the following:

Corollary. Let ¢ : V x V — F be a symmetric (or Hermitian) form. Then there exists an orthonormal basis
of V such that ¢ in this basis is represented by a diagonal matrix.

11.3 Simultaneous Diagonalisation

Let V be a finite dimensional real (or complex) vector space. Let ¢,1 : V x V — F be symmetric (or
Hermitian) linear forms. Assume ¢ is positive definite. Then there exists a basis of V' with respect to which
both ¢ and ¢ are diagonal.
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