
Number Fields Revision

Abigail Tan
April 22, 2023

Lecture 1
In this lecture, we motivate the study of number fields. The main theorem here is that if S
is finitely generated over R, then S is integral over R. It follows quickly that OL is a ring in L.

The integers Z have a particular structure inside of Q. In this course, for more general fields
L, we study the properties of subrings OL ∈ L that behave in L as Z behaves in Q.

Definitions (Number field and OL). A number field is a finite extension of Q. Let OL be
the set of algebraic integers in L.

[Auxiliary definitions]

Theorem. Let R ⊆ S as rings. If S is finitely generated over R, then S is integral over R.
Proof sketch. Take generators α = 1, α2, . . . , αn for S over R. Consider the map ms : S → S,
x 7→ sx, and write ms(αi) = sαi =

∑
bijαj for some (bij) = B. Check that

(sI −B)

α1
...
αn

 = 0.

Then use adj(X)X = det(X)I to get det(sI − B) = 0, which gives a polynomial that s is a
root of, so it is integral.

Lecture 2
This introduces a few results, working towards showing that any number field must have an
integral basis.

Proposition. Let L/Q be a number field. Then α ∈ OL if and only if NL/Q(α) ∈ Z and
TrL/Q(α) ∈ Z.

Proposition. For L = K(
√
d)

OL =

Z[
√
d] d ≡ 2 or 3 mod 4

Z
[
1+

√
d

2

]
d ≡ 1 mod 4

Definition (Integral basis). A basis {α1, . . . , αn} of L as a Q-vector space is an integral basis
if

OL =

{
n∑

i=1

miαi

∣∣∣mi ∈ Z

}
.

This basically corresponds to {α1, . . . , αn} being “a Q-basis for L and a Z-basis for OL”.
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Lecture 3
Prove that any number field has an integral basis. Establish the basis-invariant property of
the discriminant ∆.

Definition/Proposition (Gram matrix and discriminant). Let α1, . . . , αn be a basis for
L/K. Then define

∆(α1, . . . , αn) = det(TrL/K(αiαj)).

If σi : L → K̄ are the n distinct K-homomorphisms and S is a matrix with Sij = σi(αj), then

∆(α1, . . . , αn) = (detS)2.

Theorem. Every number field L/Q has an integral basis.
Proof sketch. It’s quick to check there exists a basis {αi} in OL. Pick one with |∆(α1, . . . , αn)|
minimal. Then write x ∈ OL in terms of these, suppose a coefficient isn’t an integer, then get
a contradiction of minimality using ∆(α′

1, . . . , α
′
n) = (detA)2∆(α1, . . . , αn).

Remark. Note that ∆ is effectively a function of a basis, and determined by L (L determines
{σi}, which determines S and hence ∆). A basis corresponding to minimal ∆ is integral
(recall the idea of “algebraic” really meaning “finite”, from lectures).

It follows quickly that ∆(α1, . . . , αn) is independent of the choice of integral basis, so we define
this as the discriminant DL of L.

Lecture 4-5 (and end of lecture 3)
We want to measure the failure of unique factorisation by studying (products of) ideals. It
turns out that in a number field, every ideal factors uniquely into a product of prime ideals.

Definition (Product of ideals). Let a, b◁OL. Define product ab =
{∑n

i=1 aibi
∣∣ai ∈ a, bi ∈ b

}
.

Proposition. For K a number field, OK is a Dedekind domain, i.e.
(i) OK is an integral domain
(ii) OK is a Noetherian ring
(iii) if x ∈ K is integral over OK then x ∈ OK

(iv) every nonzero prime ideal is maximal (Krull dimension of 1).

Proposition (Containment and division). Let a, b be ideals. Then b|a if and only if a ⊆ b.

Theorem. Let a ⊴ OK be a nonzero ideal. Then a can be written uniquely as a product of
prime ideals.

Corollary. The nonzero fractional ideals form a group Ik under multiplication (a free abelian
group generated by the prime ideals p). Observe that K∗ → IK , α 7→ ⟨α⟩ is a group homo-
morphism, with kernel OK

∗. The image of this homomorphism is the principal ideals pk.

Definition. The class group ClK of K is ClK = Ik/pk.

2



Theorem. The following are equivalent: (i) OK is a PID, (ii) OK is a UFD, (iii) ClK is trivial.

Lecture 6
Start working with norms of ideals, working towards Dedekind’s criterion and factorisation
of principal ideals.

Definition (Norm of ideal). Let [L : Q] = n and a ⊴ OL be an ideal. Then N(a) = |OL/a|.

Lemma (Pre-Dedekind lemmas).
(i) If α ∈ OL with α ̸= 0, then N(⟨α⟩) = |NL/Q(α)|
(ii) Let p ⊴ OL be a prime ideal, then ∃!p ∈ Z prime s.t. p|⟨p⟩ = pOL

This shows that every prime ideal in OL is a factor of some pOL = ⟨p⟩, p a prime.

Lecture 7-8
State and work with Dedekind’s criterion for factorising principal ideals.

Theorem (Dedekind’s criterion). Let α ∈ OL with minimal polynomial g(x) ∈ Z[x]. Suppose
Z[α] ⊆ OL has finite index coprime to p i.e. |OL/Z[α]| < ∞ and p ∤ |OL/Z[α]|. Let ḡ(x) = g(x)
(mod p) factorise over Fp(x) into irreducibles as ḡ(x) = ϕ̄e1

1 . . . ϕ̄er
r . Then ⟨p⟩ = pe11 . . . perr

where pi = ⟨p, ϕi(α)⟩ are such that ϕi reduces to ϕ̄i mod p.

Definition. Let ⟨p⟩ = pe11 . . . perr . Then we say p ramifies if some ei > 1, p is inert if
r = 1 = e1, and p splits if r = [L : Q] and all ei = 1.

Lemma. 2 ramifies in L iff d ≡ 2 or 3 mod 4, 2 is inert iff d ≡ 5 mod 8, and 2 splits iff d ≡ 1
mod 8.

Lecture 9
Use Minkowski’s lemma and the geometry of numbers to establish the finiteness of the class
group.

Work with the lattice Λ = Zv1+Zv2 ⊆ R2. If vi = aie1+bie2, then let A(Λ) =

∣∣∣∣det(a1 a2
b1 b2

)∣∣∣∣.
Lemma (Minkowski’s lemma). Let a closed disc S centred on 0 have area at least 4A(Λ).
Then S contains a nonzero point of Λ.
(In particular, ∃α ∈ Λ with 0 < |α|2 ≤ 4A(Λ)/π.)

Lemma. A(OL) =
1
2

√
|DL| and A(a) = N(a)A(OL).

(This follows from checking A(a) = 1
2 |∆(α1, α2)|2 where α1, α2 are an integral basis for a.)

Sketch for the next theorem. To prove that the class group is finite, we use Minkowski’s lemma
to show that any element of the class group CL has an ideal representative of smaller norm
than some constant CL which depends only on L itself.
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Theorem. The class group ClL is finite and is generated by the class of prime ideals dividing
⟨p⟩ for some prime p < 2

√
|DL|/π =: CL.

Proof sketch. Minkowski’s lemma implies there is some 0 ̸= α ∈ α with N(α) ≤ 4A(a)/π =:
N(a)CL. But α ∈ a so ⟨α⟩ ⊆ a so for some ideal b, ⟨α⟩ = ab.
Hence N(α) = N(⟨α⟩) = N(a)N(b) so N(b) ≤ CL by the Minkowski result. Therefore
[b] = [a−1] ∈ ClL.
Replacing a with a−1 we’ve shown that for all [a] ∈ ClL, there is a representative b of [a] with

N(b) ≤
2
√

|DL|
π

= CL.

But for all m ∈ Z, there are finitely many ideals a in OL with N(a) = m.
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