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1 Postulates
1.1 Postulate 1
The wavefunction 1(x,t) of a particle is normalisable.

WU DAV = [ [pie O AV = N <o
R3 R3

1.2 Postulate 2

Writing the normalised wavefunction as 1(x,t) = ¥(x,t)/v'N, the probability density function for finding
the particle within a certain volume is

p(x,t) = [(x, 1),
1.3 Postulate 3

The wavefunction of a particle of mass m in a potential U (x) satisfies the time-dependent Schrodinger equation

o(x, 12
mwé’;t) = 5 VP, 1) + U (1),



2 Operators

2.1 Important Operators

For a quantity z, if the corresponding operator is Z then we can find the expectation value using

@ = [ v

Quantity | Operator
z T
P —ihV
T — P2
U U(z)
H T+U

2.2 Hermitian Operators

If A is an operator, the Hermitian conjugate At is the operator that satisfies

(ATep1, 1he) = (11, Agho).
A is Hermitian if A = AT,

3 Time-Independent Schrodinger Equation

Using the Hamiltonian operator H we can rewrite the time-dependent Schrodinger equation in the following
time-independent form
oy

ihe = (Hy)(x,1).

Trying the solution ¥ (x,t) = x(x)7T(t), plugging into the TDSE and separating variables we get
OT(t) _ Hx(x)

) 1
MO e T ax)

which must be constant (depends both only on ¢ and only on x). Solving gives T'(t)
So we get a solution of the form

— o—iBt/h

V(x,t) = x(x)e P

and these solutions are called stationary states. The probability density p for stationary states is time-
independent. Every solution of the TDSE can be written as a superposition of stationary states.
The TISE also gives the following by which we solve for y(x):

. K2
Ax(x) = Bx() = — o x'(2) + Ula)x(x) = Bx(@).
If U(z) = U(—x) and the energy spectrum is non-degenerate, then eigenfunctions x are either even or odd.

3.1 Bound and Non-bound Systems

Bound (discrete eigenfunctions, normalisable) and non-bound (continuous) system superpositions.
o0
Y(x,t) = Zanxn(x)eﬂfznt/h Y(x,t) = / A(a)XOAx)eszat/h dev
n=1 A
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3.2 Free Particle

cikz—ihk>t/2m

We take a linear superposition (here Gaussian) of ¢y (z,t) = since y is not normalisable. Some-

times we write k = /2mFE /h2.
o o ihk*t 27 o(z — thoy)2
t) = —(k — ko)? + ik — dk — 1) =4/22 2 m
d)(xa ) /—oo €Xp ( 2( 0) +kz om ) ¢($a ) o €Xp ( 2(02 N %)

3.3 Harmonic Oscillator

For the harmonic oscillator, the potential is U(x) = %kxz = %mwaQ so the corresponding TISE is
R 1,
-4 = =F
2m dz? * g MW X X

We can rescale variables, writing 72 = mwa?/h and ¢ = 2E/hw, and find a particular solution xo(n) = Ae™7"/2
corresponding to e = 1. To generalise this, we write x(n) = f(n)e*”2/2, plug this into the TISE, and use
power series methods to find f(n). The series must in fact terminate, in order for x(7) to be normalisable.

4 Expectation and Uncertainty

4.1 Expectation

Given an observable o on a state i, the corresponding eigenvalues give the possible measurements for o.
Hence

2
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We define (6),, as
©)y = (o) = [ " x)avav.

4.2 Commutators
The commutator of the two operators A and B is

(A, B = AB - BA.
Two Hermitian operators are simultaneously diagonalisable (have a shared spanning basis of eigenfunctions)
if and only if their commutator is zero.
4.3 Uncertainty
The uncertainty in the measurement of A on a state v is given by

N A - A2

(ApA)? = ((A—(4), I)2>¢ = (42), — (4), -

The uncertainty is zero if and only if ¢ is an eigenfunction of A.

4.4 Generalised Uncertainty Theorem

Let A and B be observables and ¢ be a state. Then
1 o
(ApA)(AyB) 2 (6, 14, Blo).

The Heisenberg uncertainty principle follows from this by using [, p] = ihl.
If ¢ = iapy for some a € R, then 7 is a state of minimal uncertainty.



4.5 FEhrenfest Theorem

The expectation value of an operator (fl) on a state 1 evolves according to

Ay + (5

S

<A>¢ =
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5 Schrodinger Equation in 3D

In 3D, the TISE is
2
() + UG () = Ex(x).
In Cartesian coordinates
0? 0? 0?

T g

2 —_— [
v oy? 022

and in spherical coordinates
1 02 1 0 0 0?
Vi=_— ————— [sinf— (sinfl— | — — | .
rore + r2sin® @ (sm 00 (sm 89) 8¢2>

For a spherically symmetric potential, the TISE becomes

n o d?
~ g g2 X)) + Ur)x(r) = Ex(r).
To solve this, define o(r) = rx(r) to get

I ot
2m  dr?

+U(r)o(r) = Eo(r)

and solve this over all of R by using U(r) = U(—r) and look for odd solutions with o(—r) = —o(r).

6 Angular Momentum

Define L = % x p = —ilix x V which gives

L; = —ihejjpx;—
i iJ jal'k

and generally [I:Z, I:j] = ihsijk[:k. We can also check that for L? := [:12 —1—1:22 —|—I:32, we have e.g. [ﬁQ, [:1] =0.
In fact, {H, L%, L;} is a set of three mutually commuting operators.
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