Quantum Mechanics

Definitions and Results (L1-15)

Abigail Tan November 12, 2021

Contents

1	Postulates 1			
	1.1	Postulate 1		
	1.2	Postulate 2		
	1.3	Postulate 3		
2	Operators 2			
	2.1	Important Operators		
	2.2	Hermitian Operators		
3	Tin	ne-Independent Schrödinger Equation		
	3.1	Bound and Non-bound Systems		
	3.2	Free Particle		
	3.3	Harmonic Oscillator		
4	Exp	pectation and Uncertainty		
	4.1	Expectation		
	4.2	Commutators		
	4.3	Uncertainty		
	4.4	Generalised Uncertainty Theorem		
	4.5	Ehrenfest Theorem		
5	Sch	rödinger Equation in 3D		
6	Ang	gular Momentum		

1 Postulates

1.1 Postulate 1

The wavefunction $\psi(\mathbf{x},t)$ of a particle is normalisable.

$$\int_{\mathbb{R}^3} \psi^*(\mathbf{x}, t) \psi(\mathbf{x}, t) \, dV = \int_{\mathbb{R}^3} |\psi(\mathbf{x}, t)|^2 \, dV = N < \infty$$

1.2 Postulate 2

Writing the normalised wavefunction as $\bar{\psi}(\mathbf{x},t) = \psi(\mathbf{x},t)/\sqrt{N}$, the probability density function for finding the particle within a certain volume is

$$\rho(\mathbf{x},t) = |\bar{\psi}(\mathbf{x},t)|^2.$$

1.3 Postulate 3

The wavefunction of a particle of mass m in a potential $U(\mathbf{x})$ satisfies the time-dependent Schrödinger equation

$$i\hbar \frac{\partial \psi(\mathbf{x},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{x},t) + U(\mathbf{x})\psi(\mathbf{x},t).$$

2 Operators

2.1 Important Operators

For a quantity z, if the corresponding operator is \hat{z} then we can find the expectation value using

$$\langle z \rangle = \int_{-\infty}^{\infty} \psi^*(\hat{z}\psi) \, \mathrm{d}x.$$

Quantity	Operator
\hat{x}	x
\hat{p}	$-i\hbar\nabla$
\hat{T}	$-\frac{\hbar^2}{2m}\nabla^2$
\hat{U}	$U(\hat{x})$
\hat{H}	$\hat{T} + \hat{U}$

2.2 Hermitian Operators

If \hat{A} is an operator, the Hermitian conjugate \hat{A}^{\dagger} is the operator that satisfies

$$(\hat{A}^{\dagger}\psi_1, \psi_2) = (\psi_1, \hat{A}\psi_2).$$

 \hat{A} is Hermitian if $\hat{A} = \hat{A}^{\dagger}$.

3 Time-Independent Schrödinger Equation

Using the Hamiltonian operator \hat{H} we can rewrite the time-dependent Schrödinger equation in the following time-independent form

$$i\hbar \frac{\partial \psi}{\partial t} = (\hat{H}\psi)(\mathbf{x}, t).$$

Trying the solution $\psi(\mathbf{x},t) = \chi(\mathbf{x})T(t)$, plugging into the TDSE and separating variables we get

$$i\hbar\frac{1}{T(t)}\frac{\partial T(t)}{\partial t} = \frac{\hat{H}\chi(\mathbf{x})}{\chi(\mathbf{x})} := E$$

which must be constant (depends both only on t and only on \mathbf{x}). Solving gives $T(t) = e^{-iEt/\hbar}$. So we get a solution of the form

$$\psi(\mathbf{x},t) = \chi(\mathbf{x})e^{-iEt/\hbar}$$

and these solutions are called stationary states. The probability density ρ for stationary states is time-independent. Every solution of the TDSE can be written as a superposition of stationary states. The TISE also gives the following by which we solve for $\chi(\mathbf{x})$:

$$\hat{H}\chi(x) = E\chi(x) \implies -\frac{\hbar^2}{2m}\chi''(x) + U(x)\chi(x) = E\chi(x).$$

If U(x) = U(-x) and the energy spectrum is non-degenerate, then eigenfunctions χ are either even or odd.

3.1 Bound and Non-bound Systems

Bound (discrete eigenfunctions, normalisable) and non-bound (continuous) system superpositions.

$$\psi(\mathbf{x},t) = \sum_{n=1}^{\infty} a_n \chi_n(\mathbf{x}) e^{-iE_n t/\hbar} \qquad \psi(\mathbf{x},t) = \int_{\Delta} A(\alpha) \chi_\alpha(\mathbf{x}) e^{-iE_\alpha t/\hbar} d\alpha$$

3.2 Free Particle

We take a linear superposition (here Gaussian) of $\psi_k(x,t) = e^{ikx-i\hbar k^2t/2m}$ since χ is not normalisable. Sometimes we write $k = \sqrt{2mE/\hbar^2}$.

$$\psi(x,t) = \int_{-\infty}^{\infty} \exp\left(-\frac{\sigma}{2}(k-k_0)^2 + ikx - \frac{i\hbar k^2 t}{2m}\right) dk \implies \psi(x,t) = \sqrt{\frac{2\pi}{\alpha}} \exp\left(-\frac{\sigma(x - \frac{\hbar k_0}{m}t)^2}{2(\sigma^2 + \frac{\hbar^2 t^2}{m^2})}\right)$$

3.3 Harmonic Oscillator

For the harmonic oscillator, the potential is $U(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2x^2$ so the corresponding TISE is

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\chi}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2x^2\chi = E\chi.$$

We can rescale variables, writing $\eta^2 = m\omega x^2/\hbar$ and $\varepsilon = 2E/\hbar\omega$, and find a particular solution $\chi_0(\eta) = Ae^{-\eta^2/2}$ corresponding to $\varepsilon = 1$. To generalise this, we write $\chi(\eta) = f(\eta)e^{-\eta^2/2}$, plug this into the TISE, and use power series methods to find $f(\eta)$. The series must in fact terminate, in order for $\chi(\eta)$ to be normalisable.

4 Expectation and Uncertainty

4.1 Expectation

Given an observable o on a state ψ , the corresponding eigenvalues give the possible measurements for o. Hence

$$\langle o \rangle = \sum_{i} p_i \lambda_i = \sum_{i} |(\psi, \psi_i)|^2 \lambda_i = \left(\sum_{i} (\psi, \psi_i) \psi_i, \sum_{j} \lambda_j (\psi, \psi_j) \psi_j \right).$$

We define $\langle \hat{o} \rangle_{\psi}$ as

$$\langle \hat{o} \rangle_{\psi} = (\psi, \hat{o}\psi) = \int_{\mathbb{R}^{\mu}} \psi^*(\mathbf{x}) \hat{o}\psi(\mathbf{x}) \, dV.$$

4.2 Commutators

The commutator of the two operators \hat{A} and \hat{B} is

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A}.$$

Two Hermitian operators are simultaneously diagonalisable (have a shared spanning basis of eigenfunctions) if and only if their commutator is zero.

4.3 Uncertainty

The uncertainty in the measurement of A on a state ψ is given by

$$(\Delta_{\psi}A)^{2} = \langle (\hat{A} - \langle \hat{A} \rangle_{\psi} \hat{I})^{2} \rangle_{\psi} = \langle \hat{A}^{2} \rangle_{\psi} - \langle \hat{A} \rangle_{\psi}^{2}.$$

The uncertainty is zero if and only if ψ is an eigenfunction of A.

4.4 Generalised Uncertainty Theorem

Let A and B be observables and ψ be a state. Then

$$(\Delta_{\psi}A)(\Delta_{\psi}B) \ge \frac{1}{2}|(\psi, [\hat{A}, \hat{B}]\psi)|.$$

The Heisenberg uncertainty principle follows from this by using $[\hat{x}, \hat{p}] = i\hbar \hat{I}$. If $\hat{x}\psi = ia\hat{p}\psi$ for some $a \in \mathbb{R}$, then ψ is a state of minimal uncertainty.

4.5 Ehrenfest Theorem

The expectation value of an operator $\langle \hat{A} \rangle$ on a state ψ evolves according to

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle \hat{A} \rangle_{\psi} = \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle_{\psi} + \langle \frac{\partial \hat{A}}{\partial t} \rangle_{\psi}.$$

5 Schrödinger Equation in 3D

In 3D, the TISE is

$$-\frac{\hbar^2}{2m}\nabla^2\chi(\mathbf{x}) + U(\mathbf{x})\chi(\mathbf{x}) = E\chi(\mathbf{x}).$$

In Cartesian coordinates

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

and in spherical coordinates

$$\nabla^2 = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 \sin^2 \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) - \frac{\partial^2}{\partial \phi^2} \right).$$

For a spherically symmetric potential, the TISE becomes

$$-\frac{\hbar^2}{2mr}\frac{\mathrm{d}^2}{\mathrm{d}r^2}(r\chi(r)) + U(r)\chi(r) = E\chi(r).$$

To solve this, define $\sigma(r) = r\chi(r)$ to get

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\sigma(r)}{\mathrm{d}r^2} + U(r)\sigma(r) = E\sigma(r)$$

and solve this over all of \mathbb{R} by using U(r) = U(-r) and look for odd solutions with $\sigma(-r) = -\sigma(r)$.

6 Angular Momentum

Define $\hat{\mathbf{L}} = \hat{\mathbf{x}} \times \hat{\mathbf{p}} = -i\hbar \mathbf{x} \times \nabla$ which gives

$$L_i = -i\hbar \varepsilon_{ijk} x_j \frac{\partial}{\partial x_k}$$

and generally $[\hat{L}_i, \hat{L}_j] = i\hbar \varepsilon_{ijk} \hat{L}_k$. We can also check that for $\hat{L}^2 := \hat{L_1}^2 + \hat{L_2}^2 + \hat{L_3}^2$, we have e.g. $[\hat{L}^2, \hat{L}_1] = 0$. In fact, $\{\hat{H}, \hat{L}^2, \hat{L}_i\}$ is a set of three mutually commuting operators.