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Some of these notes are based on Keith Conrad’s blurbs.
We write G for Gal(f/K). The main basic results that will be used are as follows:

Proposition 1. The polynomial f € K[X] is irreducible if and only if Gal(f/K) is transitive.
Proof. Let x € L (a splitting field for f) be a root of f. Then Orbgu(s/x)(7) is the set of
roots of my . Then m, g = f iff f is irreducible, since m i|f. But my x = f iff every root
of f is in the orbit of z, i.e. Gal(f, K) acts transitively on roots of f. O

Remark. If G C 5, is transitive, then n divides |G|. (This holds because of orbit-stabiliser).
Additionally, Disc(f) # 0 if and only if f is separable.

Proposition 2. If char K # 2, then the fixed field of G 4,, is K(A) (where Disc(f) = A?),
and Gal(f/K) C A, if and only if Disc(f) is a square in K.

Proof. Let m € Sp, then [;o; i (Tr(iy — Tr(s)) = s8n(m) [[1<icj<n(Ti — Tj) so for o € G,
o(A) = sgn(o)A. Since A # 0, this implies A € K <= G C A, and A lies in L&,
Since [L¢4n : K] = (G : GNA,) = 1if G C A, and 2 otherwise, we have LEMn = K(A). O

The following result finds the Galois group of an irreducible cubic.
Theorem 3. Let char K # 2. Let f € K[X] be a separable, irreducible cubic. Then

As if Disc(f) is a square in K
S3 if Disc(f) is not a square in K

Gal(f/K) = {

Proof. The Galois group G is transitive since f is irreducible. The only transitive subgroups
of S3 are S3 and As, and G is contained in As iff Disc(f) is a square in K, by Prop. 2. [

Definition 4 (Resolvent cubic). Let f(X) = X%+ aX? +bX? + c¢X + d. Then the resolvent
cubic of f, R3(X), is defined as R3(X) = X3 — bX? + (ac — 4d) X — (a®d + ¢* — 4bd).

Remark. These are derived from taking f(X) = (X — r)(X — r2)(X — r3)(X — r4) and
finding R3(X) := (X — (r1ro + r374) ) (X — (1173 + 1214) ) (X — (r174 + 1r213)).

Theorem 5. The Galois groups of monic irreducible quartics f can be classified as follows.

Disc(f) ‘ resolvent cubic R3(X) ‘ Gal(f/K)

not square irred. Sy
square irred. Ay
not square red. Dg or Cy

square red. \%



Some additional results can distinguish between Dg and Cj in certain cases.

Proposition 6. Let f € Q[X] be an irreducible quartic. If G = Cy, then Disc(f) > 0.
(Hence, if Disc(f) < 0 is not a square and R3(X) is reducible, then G = Dg, by Theorem 5).
Proof. If G = Cy, then the splitting field for f over Q has degree 4. Any root of f generates an
extension of degree 4, so a field generated by one root contains all the other roots. Therefore
f has either 0 or 4 real roots. The result follows from writing roots as complex conjugate
pairs. O

Rather than quoting Theorem 5, the following example uses the ideas that are used in proving
that theorem directly.

Example 7. Find the Galois group of f(X) = X% — X — 1 over Q.

Solution. Note f is irreducible mod 2, so is irreducible over Q. We find R3(X) = X3 +4X —1
is also irreducible over Q (by the rational root theorem, the fact that neither of £1 are
roots is a sufficient condition), so the splitting field L of f over QQ contains a cubic subfield
Q(r172 + r3r4). By correspondence, the order of Gal(f/Q) is a multiple of 3. Also, since L is
a splitting field for f, we have Q(r1) C L and [Q(r1) : Q] = 4 so |Gal(f/K)| is also a multiple
of 4.

We’ve shown |Gal(f/K)| is a multiple of 12 so it is A4 or Sy, but f has discriminant —283, a
non-square, so the Galois group is not in Ay, so is Sy.

Theorem 8 (Full classification of Galois groups for irreducible quartics). Let char K # 2 and
f € K[X] be an irreducible quartic. Then G = Gal(f/K) is as follows.

Disc(f) in K | R3(X) in K[X] | (a® — 4(b—r'))Disc(f) and (r'? — 4d)Disc(f) | G
not square irred. Sy
square irred. Ay
not square root ' € K at least one is not square in K Dg
not square root ' € K both square in K Cy
square red. Vv




