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Some of these notes are based on Keith Conrad’s blurbs.
We write G for Gal(f/K). The main basic results that will be used are as follows:

Proposition 1. The polynomial f ∈ K[X] is irreducible if and only if Gal(f/K) is transitive.
Proof. Let x ∈ L (a splitting field for f) be a root of f . Then OrbGal(f/K)(x) is the set of
roots of mx,K . Then mx,K = f iff f is irreducible, since mx,K |f . But mx,K = f iff every root
of f is in the orbit of x, i.e. Gal(f,K) acts transitively on roots of f .

Remark. If G ⊂ Sn is transitive, then n divides |G|. (This holds because of orbit-stabiliser).
Additionally, Disc(f) ̸= 0 if and only if f is separable.

Proposition 2. If charK ̸= 2, then the fixed field of G∩An is K(∆) (where Disc(f) = ∆2),
and Gal(f/K) ⊂ An if and only if Disc(f) is a square in K.
Proof. Let π ∈ Sn, then

∏
1≤i<j≤n(Tπ(i) − Tπ(j)) = sgn(π)

∏
1≤i<j≤n(Ti − Tj) so for σ ∈ G,

σ(∆) = sgn(σ)∆. Since ∆ ̸= 0, this implies ∆ ∈ K ⇐⇒ G ⊂ An and ∆ lies in LG∩An .
Since [LG∩An : K] = (G : G∩An) = 1 if G ⊂ An and 2 otherwise, we have LG∩An = K(∆).

The following result finds the Galois group of an irreducible cubic.

Theorem 3. Let charK ̸= 2. Let f ∈ K[X] be a separable, irreducible cubic. Then

Gal(f/K) =

{
A3 if Disc(f) is a square in K

S3 if Disc(f) is not a square in K

Proof. The Galois group G is transitive since f is irreducible. The only transitive subgroups
of S3 are S3 and A3, and G is contained in A3 iff Disc(f) is a square in K, by Prop. 2.

Definition 4 (Resolvent cubic). Let f(X) = X4 + aX3 + bX2 + cX + d. Then the resolvent
cubic of f , R3(X), is defined as R3(X) = X3 − bX2 + (ac− 4d)X − (a2d+ c2 − 4bd).

Remark. These are derived from taking f(X) = (X − r1)(X − r2)(X − r3)(X − r4) and
finding R3(X) := (X − (r1r2 + r3r4))(X − (r1r3 + r2r4))(X − (r1r4 + r2r3)).

Theorem 5. The Galois groups of monic irreducible quartics f can be classified as follows.

Disc(f) resolvent cubic R3(X) Gal(f/K)

not square irred. S4

square irred. A4

not square red. D8 or C4

square red. V



Some additional results can distinguish between D8 and C4 in certain cases.

Proposition 6. Let f ∈ Q[X] be an irreducible quartic. If G = C4, then Disc(f) > 0.
(Hence, if Disc(f) < 0 is not a square and R3(X) is reducible, then G = D8, by Theorem 5).
Proof. If G = C4, then the splitting field for f over Q has degree 4. Any root of f generates an
extension of degree 4, so a field generated by one root contains all the other roots. Therefore
f has either 0 or 4 real roots. The result follows from writing roots as complex conjugate
pairs.

Rather than quoting Theorem 5, the following example uses the ideas that are used in proving
that theorem directly.

Example 7. Find the Galois group of f(X) = X4 −X − 1 over Q.
Solution. Note f is irreducible mod 2, so is irreducible over Q. We find R3(X) = X3+4X−1
is also irreducible over Q (by the rational root theorem, the fact that neither of ±1 are
roots is a sufficient condition), so the splitting field L of f over Q contains a cubic subfield
Q(r1r2 + r3r4). By correspondence, the order of Gal(f/Q) is a multiple of 3. Also, since L is
a splitting field for f , we have Q(r1) ⊂ L and [Q(r1) : Q] = 4 so |Gal(f/K)| is also a multiple
of 4.
We’ve shown |Gal(f/K)| is a multiple of 12 so it is A4 or S4, but f has discriminant −283, a
non-square, so the Galois group is not in A4, so is S4.

Theorem 8 (Full classification of Galois groups for irreducible quartics). Let charK ̸= 2 and
f ∈ K[X] be an irreducible quartic. Then G = Gal(f/K) is as follows.

Disc(f) in K R3(X) in K[X] (a2 − 4(b− r′))Disc(f) and (r′2 − 4d)Disc(f) G

not square irred. S4

square irred. A4

not square root r′ ∈ K at least one is not square in K D8

not square root r′ ∈ K both square in K C4

square red. V


