Galois Theory - Finding Galois Groups

Abigail Tan March 25, 2023

Some of these notes are based on Keith Conrad's blurbs. We write G for $\operatorname{Gal}(f/K)$. The main basic results that will be used are as follows:

Proposition 1. The polynomial $f \in K[X]$ is irreducible if and only if $\operatorname{Gal}(f/K)$ is transitive. *Proof.* Let $x \in L$ (a splitting field for f) be a root of f. Then $\operatorname{Orb}_{\operatorname{Gal}(f/K)}(x)$ is the set of roots of $m_{x,K}$. Then $m_{x,K} = f$ iff f is irreducible, since $m_{x,K}|f$. But $m_{x,K} = f$ iff every root of f is in the orbit of x, i.e. $\operatorname{Gal}(f,K)$ acts transitively on roots of f.

Remark. If $G \subset S_n$ is transitive, then *n* divides |G|. (This holds because of orbit-stabiliser). Additionally, $\text{Disc}(f) \neq 0$ if and only if *f* is separable.

Proposition 2. If char $K \neq 2$, then the fixed field of $G \cap A_n$ is $K(\Delta)$ (where $\operatorname{Disc}(f) = \Delta^2$), and $\operatorname{Gal}(f/K) \subset A_n$ if and only if $\operatorname{Disc}(f)$ is a square in K. *Proof.* Let $\pi \in S_n$, then $\prod_{1 \leq i < j \leq n} (T_{\pi(i)} - T_{\pi(j)}) = \operatorname{sgn}(\pi) \prod_{1 \leq i < j \leq n} (T_i - T_j)$ so for $\sigma \in G$, $\sigma(\Delta) = \operatorname{sgn}(\sigma)\Delta$. Since $\Delta \neq 0$, this implies $\Delta \in K \iff G \subset A_n$ and Δ lies in $L^{G \cap A_n}$. Since $[L^{G \cap A_n} : K] = (G : G \cap A_n) = 1$ if $G \subset A_n$ and 2 otherwise, we have $L^{G \cap A_n} = K(\Delta)$. \Box

The following result finds the Galois group of an irreducible cubic.

Theorem 3. Let char $K \neq 2$. Let $f \in K[X]$ be a separable, irreducible cubic. Then

$$\operatorname{Gal}(f/K) = \begin{cases} A_3 & \text{if } \operatorname{Disc}(f) \text{ is a square in } K\\ S_3 & \text{if } \operatorname{Disc}(f) \text{ is not a square in } K \end{cases}$$

Proof. The Galois group G is transitive since f is irreducible. The only transitive subgroups of S_3 are S_3 and A_3 , and G is contained in A_3 iff Disc(f) is a square in K, by Prop. 2.

Definition 4 (Resolvent cubic). Let $f(X) = X^4 + aX^3 + bX^2 + cX + d$. Then the resolvent cubic of f, $R_3(X)$, is defined as $R_3(X) = X^3 - bX^2 + (ac - 4d)X - (a^2d + c^2 - 4bd)$.

Remark. These are derived from taking $f(X) = (X - r_1)(X - r_2)(X - r_3)(X - r_4)$ and finding $R_3(X) := (X - (r_1r_2 + r_3r_4))(X - (r_1r_3 + r_2r_4))(X - (r_1r_4 + r_2r_3)).$

Theorem 5. The Galois groups of monic irreducible quartics f can be classified as follows.

$\operatorname{Disc}(f)$	resolvent cubic $R_3(X)$	$\operatorname{Gal}(f/K)$
not square	irred.	S_4
square	irred.	A_4
not square	red.	D_8 or C_4
square	red.	V

Some additional results can distinguish between D_8 and C_4 in certain cases.

Proposition 6. Let $f \in \mathbb{Q}[X]$ be an irreducible quartic. If $G = C_4$, then Disc(f) > 0. (Hence, if Disc(f) < 0 is not a square and $R_3(X)$ is reducible, then $G = D_8$, by Theorem 5). *Proof.* If $G = C_4$, then the splitting field for f over \mathbb{Q} has degree 4. Any root of f generates an extension of degree 4, so a field generated by one root contains all the other roots. Therefore f has either 0 or 4 real roots. The result follows from writing roots as complex conjugate pairs.

Rather than quoting Theorem 5, the following example uses the ideas that are used in proving that theorem directly.

Example 7. Find the Galois group of $f(X) = X^4 - X - 1$ over \mathbb{Q} .

Solution. Note f is irreducible mod 2, so is irreducible over \mathbb{Q} . We find $R_3(X) = X^3 + 4X - 1$ is also irreducible over \mathbb{Q} (by the rational root theorem, the fact that neither of ± 1 are roots is a sufficient condition), so the splitting field L of f over \mathbb{Q} contains a cubic subfield $\mathbb{Q}(r_1r_2 + r_3r_4)$. By correspondence, the order of $\operatorname{Gal}(f/\mathbb{Q})$ is a multiple of 3. Also, since L is a splitting field for f, we have $\mathbb{Q}(r_1) \subset L$ and $[\mathbb{Q}(r_1) : \mathbb{Q}] = 4$ so $|\operatorname{Gal}(f/K)|$ is also a multiple of 4.

We've shown |Gal(f/K)| is a multiple of 12 so it is A_4 or S_4 , but f has discriminant -283, a non-square, so the Galois group is not in A_4 , so is S_4 .

Theorem 8 (Full classification of Galois groups for irreducible quartics). Let char $K \neq 2$ and $f \in K[X]$ be an irreducible quartic. Then G = Gal(f/K) is as follows.

$\operatorname{Disc}(f)$ in K	$R_3(X)$ in $K[X]$	$(a^2 - 4(b - r'))$ Disc (f) and $(r'^2 - 4d)$ Disc (f)	G
not square	irred.		S_4
square	irred.		A_4
not square	root $r' \in K$	at least one is not square in K	D_8
not square	root $r' \in K$	both square in K	C_4
square	red.		V