Galois Theory - Trace and Norm

Abigail Tan March 22, 2023

Consider a degree-*n* extension L/K. We view *L* as an *n*-dimensional *K*-vector space. The map $u_x : L \to L$, $u_x(y) = xy$ is *K*-linear, so we can work with its linear-algebraic properties such as determinant and trace. Define $\operatorname{Tr}_{L/K}(x) = \operatorname{tr} u_x$ and $\operatorname{N}_{L/K}(x) = \det u_x$.

The main result of this chapter is: L/K is separable if and only if $\text{Tr}_{L/K}$ is surjective.

Proposition 1. Let L/K be finite and separable, with degree n. Let $\sigma_1, \ldots, \sigma_n : L \to M$ be the n distinct K-homomorphisms into a normal closure M for L/K. Then

$$\operatorname{Tr}_{L/K}(x) = \sum_{i=1}^{n} \sigma_i(x), \ N_{L/K}(x) = \prod_{i=1}^{n} \sigma_i(x), \ f_{x,L/K} = \prod_{i=1}^{n} (T - \sigma_i(x))$$

Proof. Proving the result for $f_{x,L/K}$ is sufficient. Let $\{e_i\}$ be a basis for L/K and $P = (\sigma_i(e_j)) \in \operatorname{Mat}_{n \times n}(M)$. The σ_i are linearly independent, so P is not singular. Now if the matrix of u_x is $A = (a_{ij})$, then $xe_j = \sum_r a_{rj}e_r$ so $\sigma_i(x)\sigma_i(e_j) = \sum_r \sigma_i(e_r)a_{rj} \forall i, j$. Writing S for the diagonal matrix of $\sigma_i(x)$, this is SP = PA, so $S = PAP^{-1}$ so S and A have the same characteristic polynomial.

For the following main result, the major observation is that $\operatorname{Tr}_{L/K} : L \to K$ is either the zero map or surjective, because it is K-linear.

Theorem 2. Let L/K be finite. Then L/K is separable if and only if $\operatorname{Tr}_{L/K}$ is surjective. *Proof.* Let n = [L:K]. If char K = 0, then $\operatorname{Tr}_{L/K}(1) = n \neq 0$ so it follows immediately. Otherwise, consider char K = p > 0. Suppose L/K is separable, and write $\operatorname{Hom}_K(L, M) = \{\sigma_1, \ldots, \sigma_n\}$ for M a normal closure for L/K. Then $\operatorname{Tr}_{L/K}(x) = \sum_{i=1}^n \sigma_i(x)$. Since the σ_i are linearly independent, there is some x with $\sum \sigma_i(x) \neq 0$, so $\operatorname{Tr}_{L/K}$ is nonzero, so surjective. For the converse, suppose L/K is inseparable. Then there exists some $x \in L$ such that $K(x) \supseteq K(x^p)$ (by a standard result). Hence $\operatorname{Tr}_{K(x)/K(x^p)} = 0$ by Cor. 5, so Prop. 3 gives $\operatorname{Tr}_{M/K} = 0$.

Preliminary results used in proving Theorem 2 are given below.

Proposition 3. For M/L/K finite extensions, $\operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(x)) = \operatorname{Tr}_{M/K}(x)$.

Proposition 4. Let L = K(x) and $f = m_{x,K} = T^n + c_{n-1}T^{n-1} + \dots + c_0 \in K[T]$. Then $f_{x,L/K} = f$.

Corollary 5. Let char K = p > 0 and L = K(x) where $x \notin K$ and $x^p \in K$. Then $\forall y \in L$, $\operatorname{Tr}_{L/K}(y) = 0$ and $N_{L/K}(y) = y^p$.